Skip to main content
  • 659 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amundson, R. 2001. The soil carbon cycles. Annual Reviews of Earth and Planetary Sciences 29: 535–562.

    Article  CAS  Google Scholar 

  • Anderson, J. M. 1977. The organization of soil animal communities. In Organisms as Components of Ecosystems: Proceedings of the VI International Soil Zoology Colloquium of the International Society of Soil Science (SSSA), ed. U. Lohm and T. Persson, pp. 15–23. Stockholm: Swedish Natural Science Research Council.

    Google Scholar 

  • Anderson, J. M. 1988. Spatiotemporal effects of invertebrates on soil processes. Biology and Fertility of Soils 6:216–227.

    Article  CAS  Google Scholar 

  • Barros, A. L. M. 1999. De capital, produtividade e crescimento da agricultura: O Brasil de 1970 a 1995. Piracicaba, SP: ESALQ/USP, 149 f. Tese (Doutorado) – Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba.

    Google Scholar 

  • Bardgett, R. D. 2005. The Biology of Soils: A Community and Ecosystem Approach. Oxford University Press, Oxford, UK.

    Google Scholar 

  • Barros, E., Pashanasi, B., Constantino, R., and Lavelle, P. 2005. Effects of land-use system on the soil macrofauna in western Brazilian Amazonia. Biology and Fertility of Soils 35: 338–347.

    Article  Google Scholar 

  • Behera, N., Pati, D. P., and Basu, S. 1991. Ecological studies of soil microfungi in a tropical forest soil of Orissa, India. Tropical Ecology 32: 136–143.

    Google Scholar 

  • Benito, N. P., Brossard, M., Pasini, A., Guimarães, M. F., and Bobillier, B. 2004. Transformations of soil macroinvertebrate populations after native vegetation conversion to pasture cultivation (Brazilian Cerrado). European Journal of Soil Biology 40:147–154.

    Article  Google Scholar 

  • Bertrand, M., and Lumaret, J. P. 1992. The role of Diplopoda litter grazing activity on recycling processes in a Mediterranean climate. Vegetatio 99–100:289–297.

    Article  Google Scholar 

  • Bever, J. D., Morton, J., Antonovics, J., and Schultz, P. A. 1996. Host-dependent sporulation and species diversity of micorrhizal fungi in a mown grassland. Journal of Ecology 75:1965–1977.

    Google Scholar 

  • Binkley, D., and Resh, S. C. 1998. Rapid changes in soils following Eucalyptus afforestation in Hawaii. Soil Sci. Soc. Am. J. 63:222–225.

    Article  Google Scholar 

  • Borneman, J., and Triplett, E. W. 1997 Molecular microbial diversity in soils from eastern Amazonia. Applied and Environmental Microbiology 63:2647–2653.

    CAS  Google Scholar 

  • Brady, N. C., and Weil, R. W. 2002. The Nature and Properties of Soils, 13th edition. New Jersey: Prentice Hall.

    Google Scholar 

  • Brossard, M., Boddey, R. M., and Blanchart, E. 2004. Soil processes under pastures in intertropical areas. Agriculture, Ecosystems and Environment 103:267–268.

    Article  Google Scholar 

  • Brown, S., and Lugo, A. E. 1990. Effects of forest clearing and succession on the carbon and nitrogen content of soils in Puerto Rico and US Virgin Islands. Plant and Soil 124:53–64.

    Article  CAS  Google Scholar 

  • Brown, G. G., Moreno, A. G., Barois, I., Fragoso, C., Rojas, P., Hernández, B. and Patrón, J. C. 2004. Soil macrofauna in SE Mexican pastures and the effect of conversion from native to introduced pastures. Agriculture, Ecosystems and Environment 103:313–327.

    Article  Google Scholar 

  • Budgett, R. 2005. The Biology of Soil: A Community and Ecosystem Approach. New York: Oxford University Press.

    Google Scholar 

  • Buschbacher, R., Uhl, C., and Serrao, E. A. S. 1988. Abandoned pastures in eastern Amazonia. II. Nutrient stocks in the soil and vegetation. Journal of Ecology 776:682–699.

    Google Scholar 

  • Chapin III, F. S., Matson, P. A., and Mooney, H. A. 2002. Principles of Terrestrial Ecosystem Ecology. New York: Springer-Verlag.

    Google Scholar 

  • Chauvel, A., Grimaldi, M., Barros, E., Blanchart, E., Desjardins, T., Sarrazin, M., and Lavelle, P. 1999. Pasture damage by an Amazonian earthworm. Nature 398:32–33.

    Article  CAS  Google Scholar 

  • Cheng, L. 1993. Biodiversity in China. Beijing, China: Science Press.

    Google Scholar 

  • Cleveland, C. C., Townsend, A. R., Schmidt, S. K., and Constance, B. C. 2003. Soil microbial dynamics and biogeochemistry in tropical forests and pastures, southern Costa Rica. Ecological Application 13:314–326.

    Article  Google Scholar 

  • Coleman, D. C. (1985). Through a ped darkly: an ecological assessment of root-soil-microbial-faunal interactions. In Ecological interactions in Soil. Plants, Microbes and Animals, ed. A. H. Fitter, pp. 1–21. Oxford, London etc.: Blackwell Scientific publications.

    Google Scholar 

  • Decaëns, T., Lavelle, P., Jiménez, J. J., Escobar, G., and Rippstein, G. 1994. Impact of land management on soil macrofauna in the Oriental Llanos of Colombia. European Journal of Soil Biology 30:157–168.

    Google Scholar 

  • Decaëns, T., Jiménez, J. J., Barros, E., Chauvel, A., Blanchart, E., and Lavelle, P. 2004. Soil macrofaunal communities in permanent pastures derived from tropical forest or savanna. Agriculture, Ecosystems and Environment 103:301–312.

    Article  Google Scholar 

  • Dodd, J. C., Burton, C. C., Burns R. G., and Jeffries P. 1987. Phosphatase activity associated with the roots and the rhizosphere of plants infected with vesicular-arbuscular mycorrhizal fungi. New Phytol. 107:163–172.

    Article  CAS  Google Scholar 

  • Doran, J. W., and Zeiss, M. R. 2000. Soil health and sustainability: managing the biotic components of soil quality. Appl Soil Ecol 15:3–11.

    Article  Google Scholar 

  • Fearnside, P. M. 1993. Deforestation in Brazilian Amazonia: the effect of population and land tenure. Ambio 22:537–545.

    Google Scholar 

  • Fitter, A. H., and Garbaye, J. 1994. Interactions between mycorrhizal fungi and other soil organisms. Plant and Soil 159:123–132.

    Google Scholar 

  • Fragoso, C., Brown, G. G., Patrón, J. C., Blanchart, E., Lavelle, P., Pashanasi, B., Senapati, B. K., and Kumar, T. 1997. Agricultural intensification, soil biodiversity and agroecosystem function in the tropics: the role of earthworms. Applied Soil Ecology 6:17–35.

    Article  Google Scholar 

  • Frankland, J. C., Dighton, J., and Boddy, L. 1990. Methods for studying fungi in soil and forest litter. In Methods in Microbiology, Vol. 22, ed. R. Grigorova and J. R. Norris, pp. 343–404. London: Academic Press.

    Google Scholar 

  • Giller, P. S. 1996. The diversity of soil communities, the ‘poor man’s tropical rainforest’. Biodiversity and Conservation 5:135–168.

    Article  Google Scholar 

  • Gillison, A. W., Jones, D. T., Susilo, F. X., and Bignell, D. E. 2003. Vegetation indicates diversity of soil macroinvertebrates: a case study with termites along a land-use intensification gradient in lowland Sumatra. Organisms, Diversity and Evolution 3:111–126.

    Article  Google Scholar 

  • González, G., Zou, X., and Borges, S. 1996. Earthworm abundance and species composition in abandoned tropical croplands: comparison of tree plantations and secondary forests. Pedobiologia 40:385–391.

    Google Scholar 

  • González, G., and Seastedt, T. R. 2001. Soil fauna and plant litter decomposition in tropical and subalpine forests. Ecology 82:955–964.

    Google Scholar 

  • González, G., Huang, C. Y., Zou, X., and Rodríguez, C. 2006. Earthworm invasions in the tropics Biological Invasions 8(6):1247–1256.

    Article  Google Scholar 

  • Groffman, P. M., Driscoll, C.T., Fahey, T. J., Hardy, J. P., Fitzhugh, R. D., and Tierney, G. L. 2001. Colder soils in a warmer world: A snow manipulation study in a northern hardwood forest ecosystem. Biogeochemistry 56:135–150.

    Article  CAS  Google Scholar 

  • Hagger, J., Wightman, K., and Fisher, R. 1997. The potential of plantations to foster woody regeneration within a deforested landscape in lowland Costa Rica. Forest Ecology and Management 99(1–2):55–64.

    Article  Google Scholar 

  • Hansen, R. A. 1999. Red oak litter promotes a microarthropod functional group that accelerates its decomposition. Plant and Soil 209:37–45.

    Article  CAS  Google Scholar 

  • Hansen, R. A. 2000. Diversity in the decomposing landscape. In Invertebrates as Webmasters in Ecosystems, ed. D. C. Coleman and P. E. Hendrix, pp. 203–219. Wallingford, UK: CABI Press.

    Google Scholar 

  • Heneghan, L., Coleman, D. C., Zou, X., Crossley, D. A., and Haines, B. L. 1999. Soil microarthropod contributions to decomposition dynamics: tropical-temperate comparisons of a single substrate. Ecology 80(6):1873–1882.

    Google Scholar 

  • Henrot, J., and Robertson, G.P. 1994. Vegetation removal in two soils of the humid tropics: effect on microbial biomass, Soil biology and Biochemistry 26:111–116.

    Article  Google Scholar 

  • Höflich, G., and Metz, R. 1997. Nutrient inputs to soils and their uptake by alfalfa through long-term irrigation with untreated sewage effluent in Mexico. Soil Use and Management 14:119–122.

    Google Scholar 

  • Holl, K. D. 1999. Factors limiting tropical rain forest regeneration in abandoned pasture: seed rain, seed germination, microsite and soil. Biotropica 31:229–242.

    Article  Google Scholar 

  • Irmler, U. 2000. Changes in the fauna and its contribution to mass loss and N release during leaf litter decomposition in two deciduous forests. Pedobiologia 44:105–118.

    Article  Google Scholar 

  • Jayachandran K, Schwab, A. P., and Hetrick, B. A. D. 1992 Mineralization of organic phosphorus by vesicular-arbuscular mycorrhizal fungi. Soil Biol. Biochem. 24:897–903.

    Article  CAS  Google Scholar 

  • Jenkinson, D. S., and Powlson, D. S. 1975. The effects of biocidal treatments on metabolism in soil-5: a method for measuring soil biomass. Soil Biol. Biochem. 8:209–213.

    Article  Google Scholar 

  • Jenos, D. P. 1988. Mycorrhiza applications in tropical forestry: are temperate zone approaches appropriate? In Threes and Mycorrhiza, ed. F. P. Ng, pp. 133–188. Kuala Lumpur, Malaysia: Forest Research Institute.

    Google Scholar 

  • Jiménez, J. J., Moreno, A. G., Decaëns, T., Lavelle, P., Fisher, M. J., and Thomas, R. J. 1998. Earthworm communities in native savannas and man-made pastures of the Eastern Plains of Colombia. Biology and Fertility of Soils 28(1):101–110.

    Article  Google Scholar 

  • Joner, E. J., and Jakobsen, I. 2005. Contribution by two arbuscular mycorrhizal fungi to P uptake by cucumber (Cucumis sativus L.) from32P-labelled organic matter during mineralization in soil. Plant and Soil 163:203–209.

    Article  Google Scholar 

  • Korf, R. P. 1997. Tropical and subtropical discomycetes. In Biodiversity of Tropical Microfungi, ed. K. D. Hyde, pp. 229–240. Hong Kong: Hong Kong University Press.

    Google Scholar 

  • Lanly, J. 1982. Tropical Forest Resources. Food and Agriculture Organization, Rome, FAO For. Pap. No. 30, p. 106.

    Google Scholar 

  • Lavelle, P. 1997. Faunal activities and soil processes: Adaptive strategies that determine ecosystem function. Advances in Ecological Research 27:93–132.

    Google Scholar 

  • Lavelle, P., and Pashanasi, B. 1989. Soil macrofauna and land management in Peruvian Amazonia (Yurimaguas, Loreto). Pedobiologia 33:283–291.

    Google Scholar 

  • %Lavelle, P., and Fragoso, C. 1999. Food-webs in the soils of the humid tropics: importance of mutualistic relationships. In The Soil Fob-Webs, ed. E. Ingham, NCN Publ.

    Google Scholar 

  • Lavelle, P., Bignell, D., Lepage, M., Wolters, V., Roger, P., Ineson, P., Heal, O. W., and Dhillion, S. 1997. Soil function in a changing world: the role of invertebrate ecosystem engineers. Soil Biology 33:159–193.

    CAS  Google Scholar 

  • Lavelle, P., Barros, E., Blanchart, E., Brown, G. G., Desjardins, T., Mariani, L., and Rossi, J. P. 2001. SOM management in the tropics: Why feeding the soil macrofauna? Nutrient Cycling in Agroecosystems 61:53–61.

    Article  Google Scholar 

  • Lavelle, P., Dangerfield, J. M., Fragoso, C., Eschenbreener, V., Lopez-Hernandez, D., Pashanasi, B., and Brussaard, L. 1994. The relationship between soil macrofauna and tropical soil fertility. In Woomer, P. L., Swift, M. J., eds The Biological Management of Tropical Soil Fertility. Chichester (UK): Wiley 137–169.

    Google Scholar 

  • Li, Y., Xu, M., Sun, O. J., and Cui, W. 2004. Effects of root and litter exclusion on soil CO2 efflux and microbial biomass in wet tropical forests. Soil Biology & Biochemistry 36: 2111–2114.

    Article  CAS  Google Scholar 

  • Li, Y., Xu, M., Zou, X., and Xia, Y. 2005. Soil CO2 efflux and fungal and bacterial biomass in a plantation and a secondary forest. Plant and Soil 268:151–160.

    Article  CAS  Google Scholar 

  • Li, Y., Xu, M., Zou, X., and Zhang, Y. 2005. Comparing of soil organic carbon dynamics in plantations and secondary forests in wet tropics in Puerto Rico. Global Change Biology 11, 239–248.

    Article  Google Scholar 

  • Lodge, D. J. 1987. Nutrient concentrations, percentage moisture and density of field-collected fungal mycelia. Soil Biology and Biochemistry 19:727–733.

    Article  Google Scholar 

  • Lodge, D. J. 1993. Nutrient cycling by fungi in wet tropical forests. In Aspects of tropical mycology, ed. S. Isaac, J. C. Frankland, R. Watling, and A. J. S. Whalley. British Mycological Society Symposium Series. Vol. 19, pp. 37–58. Cambridge: Cambridge University Press.

    Google Scholar 

  • Lodge, D. J., and Cantrell, S. 1995. Fungal communities in wet tropical forests: variation in time and space. Canadian Journal of Botany 73:1391–1398.

    Article  Google Scholar 

  • Lodge, D. J., and Ingham, E. R. 1991. A comparison of agar film techniques for estimating fungal biovolumes in litter and soil. Agriculture, Ecosystems and Environment 34: 131–144.

    Article  Google Scholar 

  • Lugo, A. E. 1992. Comparison of tropical tree plantations with secondary forests of similar age. Ecol. Monogr. 62:1–41.

    Article  Google Scholar 

  • Luizao, R. C. C., Bonde, T. A., and Rosswall, T. 1992. Seasonal variation of soil microbial biomass: the effects of clearfelling a tropical rainforest and establishment of pasture in the Central Amazon. Soil Biology and Biochemistry 24:805–813

    Article  Google Scholar 

  • Macfadyen, A. 1963. The contribution of the microfauna to total soil metabolism. In Soil Organisms, ed. J. Doeksen and Van der Drift, pp 3–15. Amsterdam: J. North Holland.

    Google Scholar 

  • Martius, C., Tiessen, H., and Vlek, P. L.G. 2001. The management of organic matter in tropical soils: What are the properties? Nutr. Cycling Agroecosyst. 61:1–6.

    Article  Google Scholar 

  • Mboukou-Kimbatsa, I. M. C., Bernhard-Reversat, F., and Loumeto, J. J. 1998. Change in soil macrofauna and vegetation when fast-growing trees are planted on savanna soils. Forest Ecology and Management 110:1–12.

    Article  Google Scholar 

  • Menaut, J. C., Barbault, R., Lavelle, P., and Lepage, M. 1985. African savannas: biological systems of humification and mineralization. In Management of the world’s savannas, ed. I. C. Tothill and J. J. Mott. Canberra, Australia: Australian Academy of Sciences.

    Google Scholar 

  • Moguel, P., and Toledo, V. M. 1999. Biodiversity conservation in traditional coffee systems of Mexico. Conservation Biology 13(1):11–21.

    Article  Google Scholar 

  • Montagnini, F., and Porras, C. 1998. Evaluating the role of plantations as C sinks: an example of integrative approach from the humid tropics. Environ. Manage. 22:459–470.

    Google Scholar 

  • Myster, R. W. 1993. Tree invasion and establishment in oldfields at Hutcheson Memorial Forest. The Botanical Review 59:251–272.

    Google Scholar 

  • Myster, R. W. 2004. Post-agricultural invasion, establishment, and growth of neotropical trees. The Botanical Review 70:381–402.

    Article  Google Scholar 

  • Myster, R. W. 2006. Light and nutrient effects on growth and uptake strategies of Inga vera, a landslide tree in Puerto Rico. Canadian Journal of Forest Research 13:1–8.

    Google Scholar 

  • Myster, R. W., and Schaefer, D. A. 2003. Species and microsite effects on litter decomposition in a Puerto Rican landslide. Community Ecology 4:157–162

    Article  Google Scholar 

  • Neill, C., Melillo, J. M., Steudler, P. A., Cerri, C. C., de Moraes, J. F. L., Piccolo, M. C., and Brito, M. 1997. Soil C and nitrogen stocks following forest clearing for pasture in the southwestern Brazilian Amazon. Ecological Applications 7:1216–1225.

    Article  Google Scholar 

  • Nepstad, D. C., Verissimo, A., Alencar, A., Nobre, C., Lima, E., Lefebvre, P., Schlesinger, P., Potter, C., Moutinho, P., Mendoza, E., Cochrane, M., and Brooks, V. 1999. Large-scale impoverishment of Amazonian forests by logging and fire. Nature 398:505–508.

    Article  CAS  Google Scholar 

  • Nüsslein, K., and Tiedje, J. M. 1999. Soil bacterial community shift correlated with change from forest to pasture vegetation in a tropical soil. Applied and Environmental Microbiology 65:3622–3626.

    Google Scholar 

  • Paul, E. A., and Clark, F. E. 1996. Components of soil biota. In Soil Microbiology and Biochemistry, ed. E. A. Paul and F. E. Clark, pp. 71–106. New York: Academic Press.

    Google Scholar 

  • Picone, C. 2000. Diversity and abundance of arbuscular-mycorrhizal fungus spores in tropical forest and pasture. Biotropica 32:734–750.

    Article  Google Scholar 

  • Post, W. M., and Kwon, K. C. 2000. Soil C sequestration and land-use change: processes and potential. Global Change Biology 6:317–327.

    Article  Google Scholar 

  • Rao, M. R, Niang, A., Kwesiga, F. R., Duguma, B., Franzel, S., Jama, B., and Buresh, R. 1998. Soil fertility replenishment in sub-Saharan Africa: new techniques and the spread of their use on farms. Agroforestry Today 10:3–8.

    Google Scholar 

  • Read, D. D., and Perez-Moreno, J. 2003. Mycorrhizas and nutrient cycling in ecosystems: a journey towards relevance? The New Phytologist 157:475–492.

    Article  Google Scholar 

  • Salas, A. M., Elliott, E. T., Westfall, D. G., Cole, C. V., and Six, J. 2003. The role of particulate organic matter in phosphorus cycling. Soil Science Society of America Journal 67:181–189.

    Article  CAS  Google Scholar 

  • Sánchez, P. 1995. Science in agroforestry. Agrofor. Syst. 30:5–55.

    Article  Google Scholar 

  • Sánchez-De León, Y., Zou, X., Borges, S., and Ruan, H. 2003. Recovery of native earthworms in abandoned tropical pastures. Conservation Biology 17:1–8.

    Article  Google Scholar 

  • Sanders, F. E., and Tinker, P. B. 1971 Mechanism of absorption of phosphate from Soil by Endogone mycorrhizas. Nature 233:278–279.

    Google Scholar 

  • Spaans, E. J. A., Baltissen, G. A. M., Miedema, R., Lansu, A. L. E., Schooderbeek, D., and Wielemaker, W. G. 1989. Changes in physical properties of young and old volcanic surface soils in Costa Rica after clearing of tropical rain forest. Hydrol. Proc. 3:383–392.

    Article  Google Scholar 

  • Swift, M. J., Heal, O. W., and Anderson, J. W. 1979. Decomposition in terrestrial ecosystems. Oxford: Blackwell.

    Google Scholar 

  • Thomas, T., Folgarait, P., Lavelle, P., and Rossi, J. P. 2004. Soil macrofaunal communities along an abandoned rice field chronosequence in Northern Argentina. Applied Soil Ecology 27:23–29.

    Article  Google Scholar 

  • Thomlinson, J. R., Serrano, M. I., Del, M., Lopez, T., Aide, T. M., and Zimmerman, J. K. 1996. Land-use dynamics in a post-agricultural Puerto Rican landscape (1936–1988). Biotropica 28:525–536.

    Article  Google Scholar 

  • Townsend, A. R., Asner, G. P., Cleveland, C. C., Lefer, M. E., and Bustamante, M. C. 2002. Unexpected changes in soil phosphorus dynamics following tropical deforestation to cattle pasture. Journal of Geophysical Research 107(D20):8067, doi: 10.1029/2001 JD000650, 2002.

    Article  CAS  Google Scholar 

  • Tufekcioglu, A., Raich, J. W., Isenhart, T., and Schultz, R. C. 2001 Soil respiration within riparian buffers and adjacent crop fields. Plant Soil 299:117–124.

    Article  Google Scholar 

  • van der Heijden, M. G. A., Klironomos, J. N., Ursic, M., Moutoglis, P., Streitwole-Engel, R., Boller, T., Weimken, A., and Sanders, I. R. 1998. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability, productivity. Nature 396:69–72.

    Article  CAS  Google Scholar 

  • Vanlauwe, B., Sanginga, N., and Merckz, R. 1997. Decomposition of four Leucaena and Senna prunings in alley cropping systems under subhumid tropical conditions: the process and its modifiers. Soil Biology & Biochemistry 29:131–137.

    Article  CAS  Google Scholar 

  • Wallwork, J. A. 1970. Ecology of Soil Animals. London: McGraw-Hill.

    Google Scholar 

  • Warren, M., and, Zou, X. 2002. Soil macrofauna and litter nutrients in three tropical tree plantations on a disturbed site in Puerto Rico. Forest Ecology and Management 170:161–171.

    Article  Google Scholar 

  • Yang, J. C., and Insam, H. 1991. Microbial biomass and relative contributions of bacteria and fungi in soil beneath tropical rain forest, Hainan Island, China. Journal of Tropical Ecology 7:385–395.

    Article  Google Scholar 

  • Young, A. 1997. Agroforestry for Soil Management, 2nd edition, p. 320. New York, USA: CAB International and ICRAF.

    Google Scholar 

  • Zou, X., and González, G. 1997. Changes in earthworm density and community structure during secondary succession in abandoned tropical pastures. Soil Biology and Biochemistry 29:627–629.

    Article  CAS  Google Scholar 

  • Zou, X. M., and Bashkin, M. 1998. Soil carbon accretion and earthworm recovery following revegetation in abandoned sugarcane fields. Soil Biol. Biochem. 30:825–830.

    Google Scholar 

  • Zou, X., and González, G. 2001. Earthworms in tropical tree plantations: effects of management and relations with soil carbon and nutrient use efficiency. In Management of Tropical Plantation Forests and Their Soil Litter System, ed. M. V. Reddy, pp. 283–295. New Delhi, India: Oxford University Press.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media,LLC

About this chapter

Cite this chapter

Li, Y., González, G. (2008). Soil Fungi and Macrofauna in the Neotropics. In: Post-Agricultural Succession in the Neotropics. Springer, New York, NY. https://doi.org/10.1007/978-0-387-33642-8_4

Download citation

Publish with us

Policies and ethics