Skip to main content

Physiological Measures of Auditory Function

  • Chapter
Handbook of Signal Processing in Acoustics

When acoustic signals enter the ears, they pass several processing stages of various complexities before they will be perceived. The auditory pathway can be separated into structures dealing with sound transmission in air (i.e. the outer ear, ear canal, and the vibration of tympanic membrane), structures dealing with the transformation of sound pressure waves into mechanical vibrations of the inner ear fluids (i.e. the tympanic membrane, ossicular chain, and the oval window), structures carrying mechanical vibrations in the fluid-filled inner ear (i.e. the cochlea with basilar membrane, tectorial membrane, and hair cells), structures that transform mechanical oscillations into a neural code, and finally several stages of neural processing in the brain along the pathway from the brainstem to the cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 629.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 799.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson SD, Kemp DT (1979) The evoked cochlear mechanical response in laboratory primates: a preliminary report. Arch Otorhinolaryngol 224, 47–54.

    Article  Google Scholar 

  • Böhme G, Welzl-Müller K (1998) Audiometrie. Huber, Göttingen.

    Google Scholar 

  • Buxton RB (2002) Introduction to Functional Magnetic Resonance Imaging. Cambridge University Press, Cambridge.

    Google Scholar 

  • Chambers J, Akeroyd MA, Summerfield AQ, Palmer AR (2001) Active control of the volume acquisition noise in functional magnetic resonance imaging: method and psychoacoustical evaluation. J Acoust Soc Am 110, 3041–3054.

    Article  ADS  Google Scholar 

  • Chen CK, Chiueh TD, Chen JH (1999) Active cancellation system of acoustic noise in MR imaging. IEEE Transact Biomed Eng 46, 186–191.

    Article  Google Scholar 

  • Cho ZH, Jones JP, Singh M (1993) Foundations of Medical Imaging. Wiley, New York.

    Google Scholar 

  • Clemis, JD (1984) Acoustic reflex testing in otoneurology. Otolaryngol Head Neck Surg 92, 141–144.

    Google Scholar 

  • Dau T, Wegner O, Mellert V, Kollmeier B (2000) Auditory brainstem responses (ABR) with optimized chirp signals compensating basilar-membrane dispersion. J Acoust Soc Am 107, 1530–1540.

    Article  ADS  Google Scholar 

  • van Dijk P, Wit HP (1990) Amplitude and frequency fluctuation of spontaneous otoacoustic emissions. J Acoust Soc Am 88, 1779–1793.

    Article  ADS  Google Scholar 

  • Edmister WB, Talavage TM, Ledden PJ, Weisskoff RM (1999) Improved auditory cortex imaging using clustered volume acquisitions. Hum Brain Mapp 7, 89–97.

    Article  Google Scholar 

  • Frackowiak RSJ, Friston KJ, Frith CD, Dolan RJ, Price CJ, Zeki S, Ashburner J, Penny W (2004) Human brain function, 2nd edition. Elsevier Academic Press, London.

    Google Scholar 

  • Goldmann AM, Gossmann WE, Friedlander PC (1989) Reduction of sound levels with antinoise in MR imaging. Radiology 173, 519–550.

    Google Scholar 

  • Gorga MP, Lilly DJ, Lenth RV (1980) Effect of signal bandwidth upon threshold of the acoustic reflex and upon loudness. Audiology 19, 277–292.

    Article  Google Scholar 

  • Griffiths TD, Uppenkamp S, Johnsrude I, Josephs O, Patterson RD (2001) Encoding of the temporal regularity of sound in the human brainstem. Nat Neurosci 4, 633–637.

    Article  Google Scholar 

  • Hall JW (1979) Auditory brainstem frequency following responses to waveform envelope periodicity. Science 205, 1297–1299.

    Article  ADS  Google Scholar 

  • Hall DA, Haggard MP, Akeroyd MA, Palmer AR, Summerfield AQ, Elliott MR, Gurney EM, Bowtell RW (1999) “Sparse” temporal sampling in auditory fMRI. Hum Brain Mapp 7, 213–223.

    Article  Google Scholar 

  • Heitmann J, Waldmann B, Schnitzler HU, Plinkert PK, Zenner HP (1998) Suppression of distortion product otoacoustic emissions (DPOAE) near 2f1-f2 removes DP-gram fine structure – evidence for a secondary generator. J Acoust Soc Am 103, 1527–1531.

    Article  ADS  Google Scholar 

  • Hudde H, Engel A (1998). Acoustomechanical human middle ear properties. Part III: eardrum impedances, transfer functions, and model calculations. ACUSTICA – Acta Acustica 84, 1091–1108.

    Google Scholar 

  • Jewett DL, Williston JS (1971) Auditory-evoked far-fields averaged from the scalp of humans. Brain 94, 681–696.

    Article  Google Scholar 

  • Johnsrude IS, Giraud AL, Frackowiak RSJ (2002) Functional imaging of the auditory system: the use of positron emission tomography. Audiol Neurootol 7, 251–276.

    Google Scholar 

  • Kalluri R, Shera CA (2001) Distortion-product source unmixing: a test of the two-mechanism model for DPOAE generation. J Acoust Soc Am 109, 622–637.

    Article  ADS  Google Scholar 

  • Kawase T, Hidaka H, Ikeda K, Hashimoto S, Takasaka T (1998) Acoustic reflex thresholds and loudness in patients with unilateral hearing losses. Eur Arch Otorhinolaryngol 255, 7–11.

    Article  Google Scholar 

  • Kemp DT (1978) Stimulated acoustic emissions from within the human auditory system. J Acoust Soc Am 64, 1386–1391.

    Article  ADS  Google Scholar 

  • Kemp DT (1979a) Evidence of mechanical nonlinearity and frequency selective wave amplification in the cochlea. Arch Otorhinolaryngol 224, 37–45.

    Article  Google Scholar 

  • Kemp DT (1979b) The evoked cochlear mechanical response and the auditory microstructure – evidence for a new element in cochlear mechanics. Scand Audiol Suppl 9, 35–47.

    Google Scholar 

  • Kemp DT (2002) Exploring cochlear status with otoacoustic emissions. In: Otoacoustic Emissions – Clinical Applications, 2nd ed., edited by MS Robinette, TJ Glattke, Thieme, New York, pp. 1–47.

    Google Scholar 

  • Knight RD, Kemp DT (2001) Wave and place fixed DPOAE maps of the human ear. J Acoust Soc Am 109, 1513–1525.

    Article  ADS  Google Scholar 

  • Lehnhardt E, Laszig R (2000) Praxis der Audiometrie. Thieme, Stuttgart.

    Google Scholar 

  • Manley G, Taschenberger G (1993) Spontaneous otoacoustic emissions from a bird: a preliminary report. In: Biophysics of Hair Cell Sensory Systems, edited by H Duifhuis, JW Horst, P van Dijk, SM van Netten. World Scientific, Singapore, pp. 33–39.

    Google Scholar 

  • Margolis RH, Popelka GR (1975) Loudness and the acoustic reflex. J Acoust Soc Am 58, 1330–1332.

    Article  ADS  Google Scholar 

  • Mauermann M, Kollmeier B (2004) Distortion product otoacoustic emission (DPOAE) input/output functions and the influence of the second DPOAE source. J Acoust Soc Am 116, 2199–2212.

    Article  ADS  Google Scholar 

  • Metz O (1951) Studies of the contraction of the tympanic muscles as indicated by changes in the impedance of the ear. Laryngoscope LXVIII(I), 48–62.

    Google Scholar 

  • Møller AR (2000) Hearing – Its Physiology and Pathophysiology, Chapter 12. Academic Press, San Diego.

    Google Scholar 

  • Näätänen R, Gaillard AWK, Mäntysalo S (1978) Early selective-attention effect on evoked potential reinterpreted. Acta Psychol 42, 313–329.

    Article  Google Scholar 

  • Neumann J, Uppenkamp S, Kollmeier B (1996) Detection of the acoustic reflex below 80 dB HL. Audiol Neurootol 1, 359–369.

    Article  Google Scholar 

  • Olsen SO, Rasmussen AN, Nielsen LH, Borgkvist BV (1999a) The acoustic reflex threshold: not predictive for loudness perception in normally-hearing listeners. Audiology 38, 303–307.

    Article  Google Scholar 

  • Olsen SO, Rasmussen AN, Nielsen LH, Borgkvist BV (1999b) The relationship between the acoustic reflex threshold and levels of loudness categories in hearing impaired listeners. Audiology 38, 308–311.

    Article  Google Scholar 

  • Picton TW, Woods DL, Proulx GB (1978) Human auditory sustained potentials. I. The nature of the response. Electroencephalogr Clin Neurophysiol 45, 186–197.

    Article  Google Scholar 

  • Picton TW, John MS, Dimitrijevic A, Purcell D (2003) Human auditory steady-state responses. Int J Audiol 42, 177–219.

    Article  Google Scholar 

  • Probst R, Lonsbury-Martin BL, Martin GK (1991) A review of otoacoustic emissions. J Acoust Soc Am 89, 2027–2067

    Article  ADS  Google Scholar 

  • Rupp A, Uppenkamp S, Gutschalk A, Beucker R, Patterson RD, Dau T, Scherg M (2002) The representation of peripheral neural activity in the middle-latency evoked field of primary auditory cortex in humans. Hear Res 174, 19–31.

    Article  Google Scholar 

  • Scherg M (1991) Akustisch evozierte Potentiale. Kohlhammer, Stuttgart.

    Google Scholar 

  • Shera CA (2003) Mammalian spontaneous otoacoustic emissions are amplitude-stabilized cochlear standing waves. J Acoust Soc Am 114, 244–262.

    Article  ADS  Google Scholar 

  • Shera CA, Guinan Jr. JJ (1999) Evoked otoacoustic emissions arise by two fundamentally different mechanisms: a taxonomy for mammalian OAEs. J Acoust Soc Am 105, 782–798.

    Article  ADS  Google Scholar 

  • Strube HW (1989) Evoked otoacoustic emissions as cochlear Bragg reflections. Hear Res 38, 35–45.

    Article  Google Scholar 

  • Talmadge CL, Tubis A, Wit HP, Long GR (1991) Are spontaneous otoacoustic emissions generated by self-sustained cochlear oscillators? J Acoust Soc Am 89, 2391–2399.

    Article  ADS  Google Scholar 

  • Talmadge CL, Tubis A, Long GR, Piskorski P (1998) Modeling otoacoustic emission and hearing threshold fine structure. J Acoust Soc Am 104, 1517–1543.

    Article  ADS  Google Scholar 

  • Wilson JP (1980) Evidence for a cochlear origin for acoustic reemissions, threshold fine-structure and tonal tinnitus. Hear Res 2, 233–252.

    Article  ADS  Google Scholar 

  • Worsley KJ, Evans AC, Marrett S, Neelin P (1992) A three-dimensional statistical analysis for CBF activation studies in human brain. J Cereb Blood Flow Metab 12, 900–918.

    Google Scholar 

  • Zweig G, Shera CA (1995) The origin of periodicity in the spectrum of evoked otoacoustic emissions. J Acoust Soc Am 98, 2018–2047.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kollmeier, B., Riedel, H., Mauermann, M., Uppenkamp, S. (2008). Physiological Measures of Auditory Function. In: Havelock, D., Kuwano, S., Vorländer, M. (eds) Handbook of Signal Processing in Acoustics. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30441-0_11

Download citation

Publish with us

Policies and ethics