Skip to main content
  • 1742 Accesses

Molecular dynamic simulations of machining at the atomic scale can reveal a significant amount of information regarding the behavior of machining and grinding processes that cannot be explained easily using classical theory or experimental procedures. This chapter explains how the use of molecular dynamic simulations can be applied to the many problems associated with machining and grinding at the meso, micro, and nanoscales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. El-Hofy H., Khairy A., Masuzawa T., McGeough J. Introduction. In: McGeough J., Editor, Micromachining of Engineering Materials, Marcel Dekker, New York, 2002.

    Google Scholar 

  2. Ikawa N., Donaldson R., Komanduri R., König W., Mckeown P.A., Moriwaki T., Stowers I., Ultraprecision metal cutting - the past, the present and the future, Annals of the CIRP, 1991, 40 (2), 587-594.

    Article  Google Scholar 

  3. Shaw M.C., Metal Cutting Principles, New York, Oxford University Press, 2005.

    Google Scholar 

  4. Luo X., Cheng K., Guo X., Holt R., An investigation on the mechanics of nanometric cutting and the development of its test-bed, International Journal of Production Research, 2003, 41 (7), 1449-1465.

    Article  Google Scholar 

  5. Taniguchi N., Nanotechnology. New York, Oxford University Press, 1996.

    Google Scholar 

  6. Dow T., Miller E., Garrard K., Tool force and deflection compensation for small milling tools, Precision Engineering, 2004, 28 (1), 31-45.

    Article  Google Scholar 

  7. Cheng K., Luo X., Jackson M.J.,  Jackson, M.J., Editor, Microfabrication and Nanomanufacturing, Taylor and Francis, CRC Press, Florida, 2006. pp. 311-338.

    Google Scholar 

  8. Cheng K., Luo X., Ward R., Holt R., Modelling and simulation of the tool wear in nanometric cutting, Wear, 2003, 255, 1427-1432.

    Article  Google Scholar 

  9. Shimada S, Molecular dynamics simulation of the atomic processes in microcutting. In, McGeough J., Editor, Micromachining of Engineering Materials. New York: Marcel Dekker, 2002, pp. 63-84.

    Google Scholar 

  10. Lee W., and Cheung C., A dynamic surface topography model for the prediction of nano-surface generation in ultra-precision machining. International Journal of Mechanical Sciences, 2001, 43, 961-991.

    Article  MATH  Google Scholar 

  11. Corbett J., Diamond Micromachining, In, McGeough J., Editor, Micromachining of Engineering Materials, New York, Marcel Dekker, 2002, pp. 125-146.

    Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2007). Atomic Scale Machining of Surfaces. In: Jackson, M.J., Ahmed, W. (eds) Surface Engineered Surgical Tools and Medical Devices. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-27028-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-27028-9_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-27026-5

  • Online ISBN: 978-0-387-27028-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics