Skip to main content
  • 188 Accesses

Abstract

In so far as neoplastic development and progression involve pathogenic deletions or mutations in critical genes, all cancers are fundamentally genetic. In the specific case of melanoma, the genetic basis of its cause is reflected in the observation that approximately 10% of cases result from the familial transmission of melanoma susceptibility loci in the germline. Whereas most melanomas are sporadic, the genetic basis is reflected in acquired or postzygotic lesions at genomic loci within melanocytes that initiate the pathway of neoplastic progression. Notably, the same genes targeted in the germline in familial melanoma, as well as in other cancer syndromes such as Li-Faumeni syndrome, are involved rather commonly in a broad range of cancer types through the mechanism of random, postzygotic mutations in somatic cells targeted for neoplastic transformation (1,2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Piepkorn MW. Genetic basis of susceptibility to melanoma. J Am Acad Dermatol 1994; 31: 1022–39.

    PubMed  CAS  Google Scholar 

  2. Piepkorn M. Melanoma genetics: an update with focus on the CDKN2A(p16)/ARF tumor suppressors. J Am Acad Dermatol 2000; 42: 705–22.

    PubMed  CAS  Google Scholar 

  3. Piepkorn M. Melanoma genetics: an update with focus on the CDKN2A(p16)/ARF tumor suppressors. J Am Acad Dermatol 2000; 42: 723–6.

    Google Scholar 

  4. Rocco JW, Sidransky D. p16(MTS-1/CDKN2/INK4a) in cancer progression. Exp Cell Res 2001; 264: 42–55.

    Google Scholar 

  5. Bittner M, Meltzer P, Chen Y, et al. Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature 2000; 406: 536–40.

    PubMed  CAS  Google Scholar 

  6. Cannon-Albright LA, Goldgar DE, Meyer LJ, et al. Assignment of a locus for familial melanoma, MLM, to chromosome 9p13-p22. Science 1992; 258: 1148–52. [See Comments.]

    Google Scholar 

  7. Bergman W, Gruis NA, Sandkuijl LA, Frants RR. Genetics of seven Dutch familial atypical multiple mole-melanoma syndrome families: a review of linkage results including chromosomes 1 and 9. J Invest Dermatol 1994; 103: 122S - 5S.

    PubMed  CAS  Google Scholar 

  8. Nancarrow DJ, Mann GJ, Holland EA, et al. Confirmation of chromosome 9p linkage in familial melanoma. Am J Hum Genet 1993; 53: 936–42.

    PubMed  CAS  Google Scholar 

  9. Goldstein AM, Dracopoli NC, Engelstein M, et al. Linkage of cutaneous malignant melanoma/dysplastic nevi to chromosome 9p, and evidence for genetic heterogeneity. Am J Hum Genet 1994; 54: 489–96.

    PubMed  CAS  Google Scholar 

  10. MacGeoch C, Bishop JA, Bataille V, et al. Genetic heterogeneity in familial malignant melanoma. Hum Mol Genet 1994; 3: 2195–200.

    PubMed  CAS  Google Scholar 

  11. Serrano M, Hannon GJ, Beach D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 1993; 366: 704–7. [See Comments.]

    Google Scholar 

  12. Kamb A, Gruis NA, Weaver-Feldhaus J, et al. A cell cycle regulator potentially involved in genesis of many tumor types. Science 1994; 264: 436–40. [See Comments.]

    Google Scholar 

  13. Kumar R, Smeds J, Berggren P, et al. A single nucleotide polymorphism in the 3’ untranslated region of the CDKN2A gene is common in sporadic primary melanomas but mutations in the CDKN2B, CDKN2C, CDK4 and p53 genes are rare. Int J Cancer 2001; 95: 388–93.

    PubMed  CAS  Google Scholar 

  14. Stone S, Jiang P, Dayananth P, et al. Complex structure and regulation of the P16 (MTS1) locus. Cancer Res 1995; 55: 2988–94.

    PubMed  CAS  Google Scholar 

  15. Mao L, Merlo A, Bedi G, et al. A novel p16INK4A transcript. Cancer Res 1995; 55: 2995–7.

    PubMed  CAS  Google Scholar 

  16. Glendening JM, Flores JF, Walker GJ, et al. Homozygous loss of the p15INK4B gene (and not the p16INK4 gene) during tumor progression in a sporadic melanoma patient. Cancer Res 1995; 55: 5531–5.

    PubMed  CAS  Google Scholar 

  17. Liu Q, Neuhausen S, McClure M, et al. CDKN2 (MTS1) tumor suppressor gene mutations in human tumor cell lines. Oncogene 1995; 10: 1061–7. [See Erratum, 1995;11: 2455.]

    Google Scholar 

  18. Walker GJ, Flores JF, Glendening JM, et al. Virtually 100% of melanoma cell lines harbor alterations at the DNA level within CDKN2A, CDKN2B, or one of their downstream targets. Genes Chromosomes Cancer 1998; 22: 157–63.

    PubMed  CAS  Google Scholar 

  19. Gonzalgo ML, Bender CM, You EH, et al. Low frequency of p16/CDKN2A methylation in sporadic melanoma: comparative approaches for methylation analysis of primary tumors. Cancer Res 1997; 57: 5336–47.

    PubMed  CAS  Google Scholar 

  20. Straume O, Akslen LA. Alterations and prognostic significance of p16 and p53 protein expression in subgroups of cutaneous melanoma. Int J Cancer 1997; 74: 535–9.

    PubMed  CAS  Google Scholar 

  21. Grover R, Chana JS, Wilson GD, et al. An analysis of p16 protein expression in sporadic malignant melanoma. Melanoma Res 1998; 8: 267–72.

    PubMed  CAS  Google Scholar 

  22. Talve L, Sauroja I, Collan Y, et al. Loss of expression of the p16INK4/CDKN2 gene in cutaneous malignant melanoma correlates with tumor cell proliferation and invasive stage. Int J Cancer 1997; 74: 255–9.

    PubMed  CAS  Google Scholar 

  23. Funk JO, Schiller PI, Barrett MT, et al. p16INK4a expression is frequently decreased and associated with 9p21 loss of heterozygosity in sporadic melanoma. J Cutan Pathol 1998; 25: 291–6.

    Google Scholar 

  24. Keller-Melchior R, Schmidt R, Piepkorn M. Expression of the tumor suppressor gene product p16INK4 in benign and malignant melanocytic lesions. J Invest Dermatol 1998; 110: 932–8.

    PubMed  CAS  Google Scholar 

  25. Polsky D, Young AZ, Busam KJ, Alani RM. The transcriptional repressor of p16/Ink4a, Idl, is up-regulated in early melanomas. Cancer Res 2001; 61: 6008–11.

    PubMed  CAS  Google Scholar 

  26. Reed JA, Loganzo F Jr, Shea CR, et al. Loss of expression of the p16/cyclin-dependent kinase inhibitor 2 tumor suppressor gene in melanocytic lesions correlates with invasive stage of tumor progression. Cancer Res 1995; 55: 2713–8.

    PubMed  CAS  Google Scholar 

  27. Sparrow LE, Eldon MJ, English DR, Heenan PJ. p16 and p21WAF1 protein expression in melanocytic tumors by immunohistochemistry. Am J Dermatopathol 1998; 20: 255–61.

    PubMed  CAS  Google Scholar 

  28. Zhang H, Schneider J, Rosdahl I. Expression of p16, p27, p53, p73 and Nup88 proteins in matched primary and metastatic melanoma cells. Int J Oncol 2002; 21: 43–8.

    PubMed  Google Scholar 

  29. Flores JF, Pollock PM, Walker GJ, et al. Analysis of the CDKN2A, CDKN2B and CDK4 genes in 48 Australian melanoma kindreds. Oncogene 1997; 15: 2999–3005.

    PubMed  CAS  Google Scholar 

  30. Borg A, Johannsson U, Johannsson O, et al. Novel germline p16 mutation in familial malignant melanoma in southern Sweden. Cancer Res 1996; 56: 2497–500.

    PubMed  CAS  Google Scholar 

  31. Pollock PM, Stark MS, Palmer JM, et al. Mutation analysis of the CDKN2A promoter in Australian melanoma families. Genes Chromosomes Cancer 2001; 32: 89–94.

    PubMed  CAS  Google Scholar 

  32. Monzon J, Liu L, Brill H, et al. CDKN2A mutations in multiple primary melanomas. N Engl J Med 1998; 338: 879–87. [See Comments.]

    Google Scholar 

  33. Auroy S, Avril MF, Chompret A, et al. Sporadic multiple primary melanoma cases: CDKN2A germline mutations with a founder effect. Genes Chromosomes Cancer 2001; 32: 195–202.

    PubMed  CAS  Google Scholar 

  34. Hashemi J, Platz A, Ueno T, et al. CDKN2A germ-line mutations in individuals with multiple cutaneous melanomas. Cancer Res 2000; 60: 6864–7.

    PubMed  CAS  Google Scholar 

  35. Gruis NA, van der Velden PA, Sandkuijl LA, et al. Homozygotes for CDKN2 (p16) germline mutation in Dutch familial melanoma kindreds. Nat Genet 1995; 10: 351–3.

    PubMed  CAS  Google Scholar 

  36. Zhang SY, Klein-Szanto AJ, Sauter ER, et al. Higher frequency of alterations in the p16/CDKN2 gene in squamous cell carcinoma cell lines than in primary tumors of the head and neck. Cancer Res 1994; 54: 5050–3.

    PubMed  CAS  Google Scholar 

  37. Spruck CH III, Gonzalez-Zulueta M, Shibata A, et al. p16 gene in uncultured tumours [Letter]. Nature 1994; 370: 183–4. [See Comments.]

    Google Scholar 

  38. Goldstein AM, Fraser MC, Struewing JP, et al. Increased risk of pancreatic cancer in melanoma-prone kindreds with p16INK4 mutations. N Engl J Med 1995; 333: 970–4. [See Comments.]

    Google Scholar 

  39. Whelan AJ, Bartsch D, Goodfellow PJ. Brief report: a familial syndrome of pancreatic cancer and melanoma with a mutation in the CDKN2 tumor-suppressor gene. N Engl J Med 1995; 333: 975–7. [See Comments.]

    Google Scholar 

  40. Ciotti P, Strigini P, Bianchi-Scarra G. Familial melanoma and pancreatic cancer. Ligurian Skin Tumor Study Group [Letter]. N Engl J Med 1996; 334: 469–70. [See Comment; see Discussion, 1996;334:471–2.]

    Google Scholar 

  41. Hille ET, van Duijn E, Gruis NA, et al. Excess cancer mortality in six Dutch pedigrees with the familial atypical multiple mole-melanoma syndrome from 1830 to 1994. J Invest Dermatol 1998; 110: 788–92.

    PubMed  CAS  Google Scholar 

  42. Bishop DT, Demenais F, Goldstein AM, et al. Geographical variation in the penetrance of CDKN2A mutations for melanoma. J Natl Cancer Inst 2002; 94: 894–903.

    PubMed  CAS  Google Scholar 

  43. Walker GJ, Hussussian CJ, Flores JF, et al. Mutations of the CDKN2/p16INK4 gene in Australian melanoma kindreds. Hum Mol Genet 1995; 4: 1845–52.

    PubMed  CAS  Google Scholar 

  44. Liu L, Lassam NJ, Slingerland JM, et al. Germline p16INK4A mutation and protein dysfunction in a family with inherited melanoma. Oncogene 1995; 11: 405–12.

    PubMed  CAS  Google Scholar 

  45. Reymond A, Brent R. p16 proteins from melanoma-prone families are deficient in binding to CDK4. Oncogene 1995; 11: 1173–8.

    PubMed  CAS  Google Scholar 

  46. Ranade K, Hussussian CJ, Sikorski RS, et al. Mutations associated with familial melanoma impair p16INK4 function [Letter]. Nat Genet 1995; 10: 114–6.

    PubMed  CAS  Google Scholar 

  47. Serrano M, Lee H, Chin L, et al. Role of the INK4a locus in tumor suppression and cell mortality. Cell 1996; 85: 27–37.

    PubMed  CAS  Google Scholar 

  48. Chin L, Pomerantz J, Polsky D, et al. Cooperative effects of INK4a and ras in melanoma susceptibility in vivo. Genes Dev 1997; 11: 2822–34.

    PubMed  CAS  Google Scholar 

  49. Sharpless NE, Bardeesy N, Lee KH, et al. Loss of pl6Ink4a with retention of p19Arf predisposes mice to tumorigenesis. Nature 2001; 413: 86–91.

    PubMed  CAS  Google Scholar 

  50. Krimpenfort P, Quon KC, Mooi WJ, et al. Loss of pl6Ink4a confers susceptibility to metastatic melanoma in mice. Nature 2001; 413: 83–6.

    PubMed  CAS  Google Scholar 

  51. Walker GJ, Hayward NK. p16INK4A and p14ARF tumour suppressors in melanoma: lessons from the mouse. Lancet 2002; 359: 7–8.

    PubMed  Google Scholar 

  52. Clark WH Jr, Elder DE, Guerry D, et al. A study of tumor progression: the precursor lesions of superficial spreading and nodular melanoma. Hum Pathol 1984; 15: 1147–65.

    PubMed  Google Scholar 

  53. Cowan JM, Halaban R, Francke U. Cytogenetic analysis of melanocytes from premalignant nevi and melanomas. J Natl Cancer Inst 1988; 80: 1159–64.

    PubMed  CAS  Google Scholar 

  54. Parmiter AH, Nowell PC. The cytogenetics of human malignant melanoma and premalignant lesions. Cancer Treat Res 1988; 43: 47–61.

    PubMed  CAS  Google Scholar 

  55. Lee JY, Dong SM, Shin MS, et al. Genetic alterations of p16INK4a and p53 genes in sporadic dysplastic nevus. Biochem Biophys Res Commun 1997; 237: 667–72.

    PubMed  CAS  Google Scholar 

  56. Boni R, Zhuang Z, Albuquerque A, et al. Loss of het-erozygosity detected on 1p and 9q in microdissected atypical nevi [Letter]. Arch Dermatol 1998; 134: 882–3.

    PubMed  CAS  Google Scholar 

  57. Park WS, Vortmeyer AO, Pack S, et al. Allelic deletion at chromosome 9p21(p16) and 17p13(p53) in microdissected sporadic dysplastic nevus. Hum Pathol 1998; 29: 127–30.

    PubMed  CAS  Google Scholar 

  58. Wang Y, Becker D. Differential expression of the cyclindependent kinase inhibitors p16 and p21 in the human melanocytic system. Oncogene 1996; 12: 1069–75.

    PubMed  CAS  Google Scholar 

  59. Matsumura Y, Nishigori C, Miyachi Y. Analysis of the p16 gene status of non-familial dysplastic nevus syndrome patients. Arch Dermatol Res 2001; 293: 540–2.

    PubMed  CAS  Google Scholar 

  60. Puig S, Ruiz A, Castel T, et al. Inherited susceptibility to several cancers but absence of linkage between dysplastic nevus syndrome and CDKN2A in a melanoma family with a mutation in the CDKN2A (P16INK4A) gene. Hum Genet 1997; 101: 359–64.

    PubMed  CAS  Google Scholar 

  61. Birindelli S, Tragni G, Bartoli C, et al. Detection of microsatellite alterations in the spectrum of melanocytic nevi in patients with or without individual or family history of melanoma. Int J Cancer 2000; 86: 255–61.

    PubMed  CAS  Google Scholar 

  62. Healy E, Sikkink S, Rees JL. Infrequent mutation of p16INK4 in sporadic melanoma. J Invest Dermatol 1996; 107: 318–21. [See Comments.]

    Google Scholar 

  63. Welch J, Millar D, Goldman A, et al. Lack of genetic and epigenetic changes in CDKN2A in melanocytic nevi. J Invest Dermatol 2001; 117: 383–4.

    PubMed  CAS  Google Scholar 

  64. Gruis NA, Sandkuijl LA, van der Velden PA, et al. CDKN2 explains part of the clinical phenotype in Dutch familial atypical multiple-mole melanoma (FAMMM) syndrome families. Melanoma Res 1995; 5: 169–77.

    PubMed  CAS  Google Scholar 

  65. Hashemi J, Linder S, Platz A, Hansson J. Melanoma development in relation to non-functional p16/INK4A protein and dysplastic naevus syndrome in Swedish melanoma kindreds. Melanoma Res 1999; 9: 21–30.

    PubMed  CAS  Google Scholar 

  66. Harland M, Meloni R, Gruis N, et al. Germline mutations of the CDKN2 gene in UK melanoma families. Hum Mol Genet 1997; 6: 2061–7.

    PubMed  CAS  Google Scholar 

  67. Wachsmuth RC, Harland M, Bishop JA. The atypical-mole syndrome and predisposition to melanoma [letter]. N Engl J Med 1998; 339: 348–9.

    PubMed  CAS  Google Scholar 

  68. Nevins JR. E2F: a link between the Rb tumor suppressor protein and viral oncoproteins. Science 1992; 258: 424–9.

    PubMed  CAS  Google Scholar 

  69. Schulze A, Zerfass K, Spitkovsky D, et al. Activation of the E2F transcription factor by cyclin D1 is blocked by p16INK4, the product of the putative tumor suppressor gene MTS1. Oncogene 1994; 9: 3475–82.

    PubMed  CAS  Google Scholar 

  70. Johnson DG. Regulation of E2F-1 gene expression by p130 (Rb2) and D-type cyclin kinase activity. Oncogene 1995; 11: 1685–92.

    PubMed  CAS  Google Scholar 

  71. Soucek T, Pusch O, Hengstschlager-Ottnad E, et al. Expression of the cyclin-dependent kinase inhibitor p16 during the ongoing cell cycle. FEBS Lett 1995; 373: 164–9.

    PubMed  CAS  Google Scholar 

  72. Hall M, Bates S, Peters G. Evidence for different modes of action of cyclin-dependent kinase inhibitors: p15 and p16 bind to kinases, p21 and p27 bind to cyclins. Oncogene 1995; 11: 1581–8.

    PubMed  CAS  Google Scholar 

  73. Ragione FD, Russo GL, Oliva A, et al. Biochemical characterization of p16INK4- and p18-containing complexes in human cell lines. J Biol Chem 1996; 271: 15942–9.

    PubMed  CAS  Google Scholar 

  74. Coleman KG, Wautlet BS, Morrissey D, et al. Identification of CDK4 sequences involved in cyclin D1 and p16 binding. J Biol Chem 1997; 272: 18869–74.

    PubMed  CAS  Google Scholar 

  75. Tam SW, Shay JW, Pagano M. Differential expression and cell cycle regulation of the cyclin-dependent kinase 4 inhibitor p16Ink4. Cancer Res 1994; 54: 5816–20.

    PubMed  CAS  Google Scholar 

  76. Li Y, Nichols MA, Shay JW, Xiong Y. Transcriptional repression of the D-type cyclin-dependent kinase inhibitor p16 by the retinoblastoma susceptibility gene product pRb. Cancer Res 1994; 54: 6078–82.

    PubMed  CAS  Google Scholar 

  77. Hara E, Smith R, Parry D, et al. Regulation of p16CDKN2 expression and its implications for cell immortalization and senescence. Mol Cell Biol 1996; 16: 859–67.

    PubMed  CAS  Google Scholar 

  78. Zhang B, Peng Z. Defective folding of mutant p16(INK4) proteins encoded by tumor-derived alleles. J Biol Chem 1996; 271: 28734–7.

    PubMed  CAS  Google Scholar 

  79. Wick ST, Dubay MM, Imanil 1, Brizuela L. Biochemical and mutagenic analysis of the melanoma tumor suppressor gene product/p16. Oncogene 1995; 11: 2013–9.

    PubMed  Google Scholar 

  80. Piepkorn M. The expression of p16(INK4a), the product of a tumor suppressor gene for melanoma, is upregulated in human melanocytes by UVB irradiation. J Am Acad Dermatol 2000; 42: 741–5.

    PubMed  CAS  Google Scholar 

  81. Quelle DE, Zindy F, Ashmun RA, Sherr CJ. Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 1995; 83: 993–1000.

    PubMed  CAS  Google Scholar 

  82. Zindy F, Quelle DE, Roussel MF, Sherr CJ. Expression of the p16INK4a tumor suppressor versus other INK4 family members during mouse development and aging. Oncogene 1997; 15: 203–11.

    PubMed  CAS  Google Scholar 

  83. David-Pfeuty T, Nouvian-Dooghe Y. Human p 14(Arf): an exquisite sensor of morphological changes and of short-lived perturbations in cell cycle and in nucleolar function. Oncogene 2002; 21: 6779–90.

    PubMed  CAS  Google Scholar 

  84. Palmero I, Pantoja C, Serrano M. p19ARF links the tumour suppressor p53 to Ras [Letter]. Nature 1998; 395: 125–6.

    PubMed  CAS  Google Scholar 

  85. Pomerantz J, Schreiber-Agus N, Liegeois NJ, et al. The Ink4a tumor suppressor gene product, pl9Arf, interacts with MDM2 and neutralizes MDM2’s inhibition of p53. Cell 1998; 92: 713–23.

    PubMed  CAS  Google Scholar 

  86. Dobrowolski R, Hein R, Buettner R, Bosserhoff AK. Loss of p14ARF expression in melanoma. Arch Dermatol Res 2002; 293: 545–51.

    PubMed  CAS  Google Scholar 

  87. Randerson-Moor JA, Harland M, Williams S, et al. A germline deletion of p14(ARF) but not CDKN2A in a melanoma-neural system tumour syndrome family. Hum Mol Genet 2001; 10: 55–62.

    PubMed  CAS  Google Scholar 

  88. Rizos H, Darmanian AP, Holland EA, et al. Mutations in the INK4a/ARF melanoma susceptibility locus functionally impair p14ARF. J Biol Chem 2001; 276: 41424–34.

    PubMed  CAS  Google Scholar 

  89. Hewitt C, Lee Wu C, et al. Germline mutation of ARF in a melanoma kindred. Hum Mol Genet 2002; 11: 1273–9.

    PubMed  CAS  Google Scholar 

  90. Wolfel T, Hauer M, Schneider J, et al. A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science 1995; 269: 1281–4.

    PubMed  CAS  Google Scholar 

  91. Sotillo R, Garcia JF, Ortega S, et al. Invasive melanoma in Cdk4-targeted mice. Proc Natl Acad Sci USA 2001; 98: 13312–7.

    PubMed  CAS  Google Scholar 

  92. Goldstein AM, Chidambaram A, Halpern A, et al. Rarity of CDK4 germline mutations in familial melanoma. Melanoma Res 2002; 12: 51–5.

    PubMed  CAS  Google Scholar 

  93. Box NF, Duffy DL, Chen W, et al. MC1R genotype modifies risk of melanoma in families segregating CDKN2A mutations. Am J Hum Genet 2001; 69: 765–73.

    PubMed  CAS  Google Scholar 

  94. Pavey S, Gabrielli B. Alpha-melanocyte stimulating hormone potentiates p16/CDKN2A expression in human skin after ultraviolet irradiation. Cancer Res 2002; 62: 87580.

    Google Scholar 

  95. Wikberg JE, Muceniece R, Mandrika I, et al. New aspects on the melanocortins and their receptors. Pharmacol Res 2000; 42: 393–420.

    PubMed  CAS  Google Scholar 

  96. Aoki H, Moro O. Involvement of microphthalmia-associated transcription factor (MITF) in expression of human melanocortin-1 receptor (MC1R). Life Sci 2002; 71: 2171–9.

    PubMed  CAS  Google Scholar 

  97. Schaffer JV, Bolognia JL. The melanocortin-1 receptor: red hair and beyond. Arch Dermatol 2001; 137: 1477–85.

    PubMed  CAS  Google Scholar 

  98. Pavey S, Conroy S, Russell T, Gabrielli B. Ultraviolet radiation induces p16CDKN2A expression in human skin. Cancer Res 1999; 59: 4185–9.

    PubMed  CAS  Google Scholar 

  99. Jimenez-Cervantes C, Olivares C, Gonzalez P, et al. The Pro162 variant is a loss-of-function mutation of the human melanocortin 1 receptor gene. J Invest Dermatol 2001; 117: 156–8.

    PubMed  CAS  Google Scholar 

  100. Scott MC, Wakamatsu K, Ito S, et al. Human melanocortin 1 receptor variants, receptor function and melanocyte response to UV radiation. J Cell Sci 2002; 115: 2349–55.

    PubMed  CAS  Google Scholar 

  101. Bastiaens M, ter Huurne J, Gruis N, et al. The melanocortin1-receptor gene is the major freckle gene. Hum Mol Genet 2001; 10: 1701–8.

    PubMed  CAS  Google Scholar 

  102. Flanagan N, Healy E, Ray A, et al. Pleiotropic effects of the melanocortin 1 receptor (MC1R) gene on human pigmentation. Hum Mol Genet 2000; 9: 2531–7.

    PubMed  CAS  Google Scholar 

  103. Flanagan N, Ray AJ, Todd C, et al. The relation between melanocortin 1 receptor genotype and experimentally assessed ultraviolet radiation sensitivity. J Invest Dermatol 2001; 117: 1314–7.

    PubMed  CAS  Google Scholar 

  104. Palmer JS, Duffy DL, Box NF, et al. Melanocortin-1 receptor polymorphisms and risk of melanoma: is the association explained solely by pigmentation phenotype? Am J Hum Genet 2000; 66: 176–86.

    PubMed  CAS  Google Scholar 

  105. Valverde P, Healy E, Sikkink S, et al. The Asp84Glu variant of the melanocortin 1 receptor (MC1R) is associated with melanoma. Hum Mol Genet 1996; 5: 1663–6.

    PubMed  CAS  Google Scholar 

  106. Kennedy C, ter Huurne J, Berkhout M, et al. Melanocortin 1 receptor (MC1R) gene variants are associated with an increased risk for cutaneous melanoma which is largely independent of skin type and hair color. J Invest Dermatol 2001; 117: 294–300.

    PubMed  CAS  Google Scholar 

  107. Gruis NA, van der Velden PA, Sandkuijl LA, et al. Variants of the melanocyte-stimulating hormone receptor gene modify melanoma risk in familial atypical multiple mole-melanoma (FAMMM) syndrome families. Melanoma Res 1997; 7 (Suppl 1): S9.

    Google Scholar 

  108. van der Velden PA, Sandkuijl LA, Bergman W, et al. Melanocortin-1 receptor variant R151C modifies melanoma risk in Dutch families with melanoma. Am J Hum Genet 2001; 69: 774–9.

    PubMed  Google Scholar 

  109. Bates S, Phillips AC, Clark PA, et al. p14ARF links the tumour suppressors RB and p53 [Letter]. Nature 1998; 395: 124–5.

    PubMed  CAS  Google Scholar 

  110. Ha T, Rees JL. Melanocortin 1 receptor: what’s red got to do with it? J Am Acad Dermatol 2001; 45: 961–4.

    PubMed  CAS  Google Scholar 

  111. Clark EA, Golub TR, Lander ES, Hynes RO. Genomic analysis of metastasis reveals an essential role for RhoC. Nature 2000; 406: 532–5.

    PubMed  CAS  Google Scholar 

  112. Yoshida BA, Sokoloff MM, Welch DR, Rinker-Schaeffer CW. Metastasis-suppressor genes: a review and perspective on an emerging field. J Natl Cancer Inst 2000; 92: 1717–30.

    PubMed  CAS  Google Scholar 

  113. Duncan LM, Deeds J, Hunter J, et al. Down-regulation of the novel gene melastatin correlates with potential for melanoma metastasis. Cancer Res 1998; 58: 1515–20.

    PubMed  CAS  Google Scholar 

  114. Deeds J, Cronin F, Duncan LM. Patterns of melastatin mRNA expression in melanocytic tumors. Hum Pathol 2000; 31: 1346–56.

    PubMed  CAS  Google Scholar 

  115. Duncan LM, Deeds J, Cronin FE, et al. Melastatin expression and prognosis in cutaneous malignant melanoma. J Clin Oncol 2001; 19: 568–76.

    PubMed  CAS  Google Scholar 

  116. Fang D, Setaluri V. Expression and Up-regulation of alternatively spliced transcripts of melastatin, a melanoma metastasis-related gene, in human melanoma cells. Biochem Biophys Res Commun 2000; 279: 53–61.

    PubMed  CAS  Google Scholar 

  117. Wehrli P, Viard I, Bullani R, et al. Death receptors in cutaneous biology and disease. J Invest Dermatol 2000; 115: 141–8.

    PubMed  CAS  Google Scholar 

  118. Shukuwa T, Katayama I, Koji T. Fas-mediated apoptosis of melanoma cells and infiltrating lymphocytes in human malignant melanomas. Mod Pathol 2002; 15: 387–96.

    PubMed  Google Scholar 

  119. Bullani RR, Wehrli P, Viard-Leveugle I, et al. Frequent downregulation of Fas (CD95) expression and function in melanoma. Melanoma Res 2002; 12: 263–70.

    PubMed  CAS  Google Scholar 

  120. Redondo P, Solano T, Vazquez B, et al. Fas and Fas ligand: expression and soluble circulating levels in cutaneous malignant melanoma. Br J Dermatol 2002; 147: 80–6.

    PubMed  CAS  Google Scholar 

  121. Urquhart JL, Meech SJ, Marr DG, et al. Regulation of Fas-mediated apoptosis by N-ras in melanoma. J Invest Dermatol 2002; 119: 556–61.

    PubMed  CAS  Google Scholar 

  122. Raisova M, Hossini AM, Eberle J, et al. The Bax/Bcl-2 ratio determines the susceptibility of human melanoma cells to CD95/Fas-mediated apoptosis. J Invest Dermatol 2001; 117: 333–40.

    PubMed  CAS  Google Scholar 

  123. Davis ST, Benson BG, Bramson HN, et al. Prevention of chemotherapy-induced alopecia in rats by CDK inhibitors. Science 2001; 291: 134–7.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Piepkorn, M. (2004). Genetic and Molecular Pathology of Melanoma. In: Barnhill, R.L., Piepkorn, M., Busam, K.J. (eds) Pathology of Melanocytic Nevi and Malignant Melanoma. Springer, New York, NY. https://doi.org/10.1007/978-0-387-21619-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-21619-5_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2327-1

  • Online ISBN: 978-0-387-21619-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics