Skip to main content

Thrombin: Structure, Functions, and Regulation

  • Chapter
  • First Online:
Thrombin

Abstract

Thrombin is a Na+-activated, allosteric serine protease that plays opposing functional roles in blood coagulation. Binding of Na+ is the major driving force behind the procoagulant, prothrombotic, and signaling functions of the enzyme, but is dispensable for cleavage of the anticoagulant protein C. The anticoagulant function of thrombin is under the allosteric control of the cofactor thrombomodulin. Recent structural advances have shed light on the remarkable molecular plasticity of this enzyme and the molecular underpinnings of thrombin allostery mediated by binding to exosite I and the Na+ site. Thrombin exists in three forms – E*, E, and E:Na+, which interconvert under the influence of ligand binding to distinct domains. The transition between the Na+-free slow form E and the Na+-bound fast form E:Na+ involves the structure of the enzyme as a whole, and so does the interconversion between the two Na+-free forms E* and E. E* is most likely an inactive form of thrombin, unable to interact with Na+ and substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ayala,Y.M., Cantwell,A.M., Rose,T., Bush,L.A., Arosio,D., Di Cera,E. 2001. Molecular mapping of thrombin–receptor interactions. Proteins 45: 107–116.

    Article  PubMed  CAS  Google Scholar 

  • Baglin,T.P., Carrell,R.W., Church,F.C., Esmon,C.T., Huntington,J.A. 2002. Crystal structures of native and thrombin-complexed heparin cofactor II reveal a multistep allosteric mechanism. Proc. Natl. Acad. Sci. USA 99: 11079–11084.

    Article  PubMed  CAS  Google Scholar 

  • Bah,A., Garvey,L.C., Ge,J., Di Cera,E. 2006. Rapid kinetics of Na+. binding to thrombin J. Biol. Chem. 281: 40049–40056.

    Article  PubMed  CAS  Google Scholar 

  • Bah,A., Chen,Z., Bush-Pelc,L.A., Mathews,F.S., Di Cera,E. 2007. Crystal structures of murine thrombin in complex with the extracellular fragments of murine protease-activated receptors PAR3 and PAR4. Proc. Natl. Acad. Sci. USA 104: 11603–11608.

    Article  PubMed  CAS  Google Scholar 

  • Bates,S.M., Weitz,J.I. 2006. The status of new anticoagulants. Br. J. Haematol. 134: 3–19.

    Article  PubMed  CAS  Google Scholar 

  • Bernard,G.R., Vincent,J.L., Laterre,P.F., LaRosa,S.P., Dhainaut,J.F., Lopez-Rodriguez,A., Steingrub,J.S., Garber,G.E., Helterbrand,J.D., Ely,E.W., Fisher,C.J., 2001.Efficacy and safety of recombinant human activated protein C for severe sepsis. N. Engl. J. Med. 344: 699–709.for The Recombinant Human Protein C Worldwide Evaluation in Severe Sepsis (PROWESS) Study Group..

    Article  PubMed  CAS  Google Scholar 

  • Berny,M.A., White,T.C., Tucker,E.I., Bush-Pelc,L.A., Di Cera,E., Gruber,A., McCarty,O.J. 2008. Thrombin mutant W215A/E217A acts as a platelet GpIb antagonist. Arterioscler. Thromb. Vasc. Biol. 28: 329–334.

    Article  PubMed  CAS  Google Scholar 

  • Bode,W., Turk,D., Karshikov,A. 1992. The refined 1.9-A X-ray crystal structure of D-Phe-Pro-Arg chloromethylketone-inhibited human alpha-thrombin: structure analysis, overall structure, electrostatic properties, detailed active-site geometry, and structure–function relationships. Protein Sci. 1: 426–471.

    Article  PubMed  CAS  Google Scholar 

  • Brass,L.F. 2003. Thrombin and platelet activation. Chest 124: 18S–25S.

    Article  PubMed  CAS  Google Scholar 

  • Cantwell,A.M., Di Cera,E. 2000. Rational design of a potent anticoagulant thrombin. J. Biol. Chem. 275: 39827–39830.

    Article  PubMed  CAS  Google Scholar 

  • Carter,W.J., Cama,E., Huntington,J.A. 2005. Crystal structure of thrombin bound to heparin. J. Biol. Chem. 280: 2745–2749.

    Article  PubMed  CAS  Google Scholar 

  • Celikel,R., McClintock,R.A., Roberts,J.R., Mendolicchio,G.L., Ware,J., Varughese,K.I., Ruggeri,Z.M. 2003. Modulation of alpha-thrombin function by distinct interactions with platelet glycoprotein Ibalpha. Science 301: 218–221.

    Article  PubMed  CAS  Google Scholar 

  • Cleary,D.B., Trumbo,T.A., Maurer,M.C. 2002. Protease-activated receptor 4-like peptides bind to thrombin through an optimized interaction with the enzyme active site surface. Arch. Biochem. Biophys. 403: 179–188.

    Article  PubMed  CAS  Google Scholar 

  • Coughlin,S.R. 2000. Thrombin signalling and protease-activated receptors. Nature 407: 258–264.

    Article  PubMed  CAS  Google Scholar 

  • Dang,Q.D., Di Cera,E. 1996. Residue 225 determines the Na(+)-induced allosteric regulation of catalytic activity in serine proteases. Proc. Natl.Acad. Sci. USA 93: 10653–10656.

    Article  PubMed  CAS  Google Scholar 

  • Dang,O.D., Vindigni,A., Di Cera,E. 1995. An allosteric switch controls the procoagulant and anticoagulant activities of thrombin. Proc. Natl. Acad. Sci. USA 92: 5977–5981.

    Article  PubMed  CAS  Google Scholar 

  • Dang,Q.D., Guinto,E.R., Di Cera,E. 1997. Rational engineering of activity and specificity in a serine protease. Nat. Biotechnol. 15: 146–149.

    Article  PubMed  CAS  Google Scholar 

  • De Cristofaro,R., De Candia,E., Rutella,S., Weitz,J.I. 2000. The Asp(272)-Glu(282) region of platelet glycoprotein Ibalpha interacts with the heparin-binding site of alpha-thrombin and protects the enzyme from the heparin-catalyzed inhibition by antithrombin III. J. Biol. Chem. 275: 3887–3895.

    Article  PubMed  CAS  Google Scholar 

  • De Cristofaro,R., Carotti,A., Akhavan,S., Palla,R., Peyvandi,F., Altomare,C., Mannucci,P.M. 2006. The natural mutation by deletion of Lys9 in the thrombin A-chain affects the pK. a value of catalytic residues, the overall enzyme’s stability and conformational transitions linked to Na+ binding FEBS J. 273: 159–169.

    Article  PubMed  CAS  Google Scholar 

  • Dementiev,A., Petitou,M., Herbert,J.M., Gettins,P.G. 2004. The ternary complex of antithrombin–anhydrothrombin–heparin reveals the basis of inhibitor specificity. Nat. Struct. Mol. Biol. 11: 863–867.

    Article  PubMed  CAS  Google Scholar 

  • Di Cera,E. 2003. Thrombin interactions. Chest 124: 11S–17S.

    Article  PubMed  CAS  Google Scholar 

  • Di Cera,E. 2006. A structural perspective on enzymes activated by monovalent cations. J. Biol. Chem. 281: 1305–1308.

    Article  PubMed  CAS  Google Scholar 

  • Di Cera, E. 2008 Thrombin. Mol. Aspects Med. 29:203–254.

    Article  PubMed  Google Scholar 

  • Di Cera,E., Guinto,E.R., Vindigni,A., Dang,Q.D., Ayala,Y.M., Wuyi,M., Tulinsky,A. 1995. The Na+. binding site of thrombin J. Biol. Chem. 270: 22089–22092.

    Article  PubMed  CAS  Google Scholar 

  • Di Cera,E., Page,M.J., Bah,A., Bush-Pelc,L.A., Garvey,L.C. 2007. Thrombin allostery. Phys. Chem. Chem. Phys. 9: 1291–1306.

    Article  PubMed  Google Scholar 

  • Dumas,J.J., Kumar,R., Seehra,J., Somers,W.S., Mosyak,L. 2003. Crystal structure of the GpIbalpha–thrombin complex essential for platelet aggregation. Science 301: 222–226.

    Article  PubMed  CAS  Google Scholar 

  • Esmon,C.T. 2003. The protein C pathway. Chest 124: 26S–32S.

    Article  PubMed  CAS  Google Scholar 

  • Esmon,N.L., DeBault,L.E., Esmon,C.T. 1983. Proteolytic formation and properties of gamma-carboxyglutamic acid-domainless protein C. J. Biol. Chem. 258: 5548–5553.

    PubMed  CAS  Google Scholar 

  • Feistritzer,C., Schuepbach,R.A., Mosnier,L.O., Bush,L.A., Di Cera,E., Griffin,J.H., Riewald,M. 2006. Protective signaling by activated protein C is mechanistically linked to protein C activation on endothelial cells. J. Biol. Chem. 281: 20077–20084.

    Article  PubMed  CAS  Google Scholar 

  • Fuentes-Prior,P., Iwanaga,Y., Huber,R., Pagila,R., Rumennik,G., Seto,M., Morser,J., Light,D.R., Bode,W. 2000. Structural basis for the anticoagulant activity of the thrombin–thrombomodulin complex. Nature 404: 518–525.

    Article  PubMed  CAS  Google Scholar 

  • Gandhi,P.S., Chen,Z., Mathews,F.S., Di Cera,E. 2008. Structural identification of a pathway of long-range communication in an allosteric enzyme. Proc. Natl. Acad. Sci. USA 105: 1832–1837.

    Article  PubMed  CAS  Google Scholar 

  • Gettins,P.G. 2002. Serpin structure, mechanism, and function. Chem. Rev. 102: 4751–4804.

    Article  PubMed  CAS  Google Scholar 

  • Gruber,A., Cantwell,A.M., Di Cera,E., Hanson,S.R. 2002. The thrombin mutant W215A/E217A shows safe and potent anticoagulant and antithrombotic effects in vivo. J. Biol. Chem. 277: 27581–27584.

    Article  PubMed  CAS  Google Scholar 

  • Gruber,A., Fernandez,J.A., Bush,L., Marzec,U., Griffin,J.H., Hanson,S.R., Di Cera,E. 2006. Limited generation of activated protein C during infusion of the protein C activator thrombin analog W215A/E217A in primates. J. Thromb. Haemost. 4: 392–397.

    Article  PubMed  CAS  Google Scholar 

  • Gruber,A., Marzec,U.M., Bush,L., Di Cera,E., Fernandez,J.A., Berny,M.A., Tucker,E.I., McCarty,O.J., Griffin,J.H., Hanson,S.R. 2007. Relative antithrombotic and antihemostatic effects of protein C activator versus low molecular weight heparin in primates. Blood 109: 3733–3740.

    Article  PubMed  CAS  Google Scholar 

  • Hedstrom,L. 2002. Serine protease mechanism and specificity. Chem. Rev. 102: 4501–4524.

    Article  PubMed  CAS  Google Scholar 

  • Ishihara,H., Connolly,A.J., Zeng,D., Kahn,M.L., Zheng,Y.W., Timmons,C., Tram,T., Coughlin,S.R. 1997. Protease-activated receptor 3 is a second thrombin receptor in humans. Nature 386: 502–506.

    Article  PubMed  CAS  Google Scholar 

  • Jacques,S.L., Kuliopulos,A. 2003. Protease-activated receptor-4 uses dual prolines and an anionic retention motif for thrombin recognition and cleavage. Biochem. J. 376: 733–740.

    Article  PubMed  CAS  Google Scholar 

  • Kahn,M.L., Zheng,Y.W., Huang,W., Bigornia,V., Zeng,D., Moff,S., Farese,R.V., Jr., Tam,C., Coughlin,S.R. 1998. A dual thrombin receptor system for platelet activation. Nature 394: 690–694.

    Article  PubMed  CAS  Google Scholar 

  • Krem,M.M., Di Cera,E. 2001. Molecular markers of serine protease evolution. EMBO J. 20: 3036–3045.

    Article  PubMed  CAS  Google Scholar 

  • Li,W., Johnson,D.J., Esmon,C.T., Huntington,J.A. 2004. Structure of the antithrombin–thrombin–heparin ternary complex reveals the antithrombotic mechanism of heparin. Nat. Struct. Mol. Biol. 11: 857–862.

    Article  PubMed  CAS  Google Scholar 

  • Mathews,II,Padmanabhan,K.P., Ganesh,V., Tulinsky,A., Ishii,M., Chen,J., Turck,C.W., Coughlin,S.R., Fenton,J.W., II. 1994.Crystallographic structures of thrombin complexed with thrombin receptor peptides: existence of expected and novel binding modes. Biochemistry 33: 3266–3279.

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi-Matsui,M., Zheng,Y.W., Sulciner,D.J., Weiss,E.J., Ludeman,M.J., Coughlin,S.R. 2000. PAR3 is a cofactor for PAR4 activation by thrombin. Nature 404: 609–613.

    Article  PubMed  CAS  Google Scholar 

  • Olson,S.T., Chuang,Y.J. 2002. Heparin activates antithrombin anticoagulant function by generating new interaction sites (exosites) for blood clotting proteinases. Trends Cardiovasc. Med. 12: 331–338.

    Article  PubMed  CAS  Google Scholar 

  • Pechik,I., Madrazo,J., Mosesson,M.W., Hernandez,I., Gilliland,G.L., Medved,L. 2004. Crystal structure of the complex between thrombin and the central “E” region of fibrin. Proc. Natl. Acad. Sci. USA 101: 2718–2723.

    Article  PubMed  CAS  Google Scholar 

  • Pechik,I., Yakovlev,S., Mosesson,M.W., Gilliland,G.L., Medved,L. 2006. Structural basis for sequential cleavage of fibrinopeptides upon fibrin assembly. Biochemistry 45: 3588–3597.

    Article  PubMed  CAS  Google Scholar 

  • Pineda,A.O., Carrell,C.J., Bush,L.A., Prasad,S., Caccia,S., Chen,Z.W., Mathews,F.S., Di Cera,E.2004a.Molecular dissection of Na+. binding to thrombin J. Biol. Chem. 279: 31842–31853.

    Article  CAS  Google Scholar 

  • Pineda,A.O., Chen,Z.W., Caccia,S., Cantwell,A.M., Savvides,S.N., Waksman,G., Mathews,F.S., Di Cera,E.2004b.The anticoagulant thrombin mutant W215A/E217A has a collapsed primary specificity pocket. J. Biol. Chem. 279: 39824–39828.

    Article  CAS  Google Scholar 

  • Pineda,A.O., Chen,Z.W., Bah,A., Garvey,L.C., Mathews,F.S., Di Cera,E. 2006. Crystal structure of thrombin in a self-inhibited conformation. J. Biol. Chem. 281: 32922–32928.

    Article  PubMed  CAS  Google Scholar 

  • Pineda,A.O., Chen,Z.W., Marino,F., Mathews,F.S., Mosesson,M.W., Di Cera,E. 2007. Crystal structure of thrombin in complex with fibrinogen gamma′ peptide. Biophys. Chem. 125: 556–559.

    Article  PubMed  CAS  Google Scholar 

  • Prasad,S., Wright,K.J., Roy,D.B., Bush,L.A., Cantwell,A.M., Di Cera,E. 2003. Redesigning the monovalent cation specificity of an enzyme. Proc. Natl. Acad. Sci. USA 100: 13785–13790.

    Article  PubMed  CAS  Google Scholar 

  • Ramakrishnan,V., DeGuzman,F., Bao,M., Hall,S.W., Leung,L.L., Phillips,D.R. 2001. A thrombin receptor function for platelet glycoprotein Ib-IX unmasked by cleavage of glycoprotein V. Proc. Natl. Acad. Sci. USA 98: 1823–1828.

    Article  PubMed  CAS  Google Scholar 

  • Rydel,T.J., Tulinsky,A., Bode,W., Huber,R. 1991. Refined structure of the hirudin–thrombin complex. J. Mol. Biol. 221: 583–601.

    Article  PubMed  CAS  Google Scholar 

  • Sadasivan,C., Yee,V.C. 2000. Interaction of the factor XIII activation peptide with alpha-thrombin. Crystal structure of its enzyme–substrate analog complex. J. Biol. Chem. 275: 36942–36948.

    Article  PubMed  CAS  Google Scholar 

  • Sambrano,G.R., Weiss,E.J., Zheng,Y.W., Huang,W., Coughlin,S.R. 2001. Role of thrombin signalling in platelets in haemostasis and thrombosis. Nature 413: 74–78.

    Article  PubMed  CAS  Google Scholar 

  • Stubbs,M.T., Oschkinat,H., Mayr,I., Huber,R., Angliker,H., Stone,S.R., Bode,W. 1992. The interaction of thrombin with fibrinogen. A structural basis for its specificity. Eur. J. Biochem. 206: 187–195.

    Article  PubMed  CAS  Google Scholar 

  • Tollefsen,D.M. 2007. Heparin cofactor II modulates the response to vascular injury. Arterioscler. Thromb. Vasc. Biol. 27: 454–460.

    Article  PubMed  CAS  Google Scholar 

  • Vijayalakshmi,J., Padmanabhan,K.P., Mann,K.G., Tulinsky,A. 1994. The isomorphous structures of prethrombin2, hirugen-, and PPACK-thrombin: changes accompanying activation and exosite binding to thrombin. Protein Sci. 3: 2254–2271.

    Article  PubMed  CAS  Google Scholar 

  • Vu,T.K., Wheaton,V.I., Hung,D.T., Charo,I., Coughlin,S.R. 1991. Domains specifying thrombin–receptor interaction. Nature 353: 674–677.

    Article  PubMed  CAS  Google Scholar 

  • Wells,C.M., Di Cera,E. 1992. Thrombin is a Na(+)-activated enzyme. Biochemistry 31: 11721–11730.

    Article  PubMed  CAS  Google Scholar 

  • Xu,W.F., Andersen,H., Whitmore,T.E., Presnell,S.R., Yee,D.P., Ching,A., Gilbert,T., Davie,E.W., Foster,D.C. 1998. Cloning and characterization of human protease-activated receptor 4. Proc. Natl. Acad. Sci. USA 95: 6642–6646.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andras Gruber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cera*, E.D., Gruber, A. (2009). Thrombin: Structure, Functions, and Regulation. In: Maragoudakis, M., Tsopanoglou, N. (eds) Thrombin. Springer, New York, NY. https://doi.org/10.1007/978-0-387-09637-7_1

Download citation

Publish with us

Policies and ethics