Skip to main content

Emerging Retroviruses and Cancer

  • Chapter
  • First Online:
Retroviruses and Insights into Cancer

Abstract

Emerging infectious diseases currently are a major challenge to the biological safety of human populations in the developed and developing worlds. A renewed interest in primate retroviruses as zoonotic pathogens was generated by the established transmission of simian immunodeficiency virus (SIV) from nonhuman primates to humans; Pan troglodytes and Cercocebus atys (HIV-1 and HIV-2, respectively) (Hahn, Shaw et al. 2000); human T-lymphotropic virus (HTLV-1) from various simian hosts (Slattery, Franchini et al 1999); foamy viruses from a diverse number of Old-World and New-World primates (Jones-Engel et al 2007), and simian retrovirus (SRV) to people exposed occupationally to nonhuman primates (Murphy, Miller et al 2006). Gammaretroviruses have been isolated from nonhuman primates, but unlike several other genera of retroviruses, e.g., HIVs, HTLVs, SRVs and foamy viruses, zoonotic transmission of these gammaretroviruses has not, as of yet, been demonstrated to cause a human disease. Gibbon ape leukemia retrovirus (GALV) has been documented to cause neoplasias in gibbons. Recently, koalas on Australia’s mainland were shown to be infected with a retrovirus, KoRV, which is highly related to GALV and is associated with a significant rise in neoplastic diseases (Hanger 1999). The surveillance of animals infected with pathogens that pose the threat of zoonoses is an important public health infrastructural priority (Kuiken, Leighton et al 2005). The recent linkage of a gammaretrovirus, xenotropic murine leukemia-related gammaretrovirus (XMRV), to human prostate cancer underscores the importance of this goal (Dong, Kim et al 2007).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anttila, T. I., Lehtinen, T. et al. 1998. Serological evidence of an association between chlamydial infections and malignant lymphomas. Br. J. Haematol. 103(1):150–156.

    Article  PubMed  CAS  Google Scholar 

  • Aspinall, R., and O’Gorman, A. 1987. Increased yields of IL-2 in media conditioned by MLA 144 cells. J. Immunol. Methods 101(1):79–84.

    Article  PubMed  CAS  Google Scholar 

  • Backhouse, T., and Bolliger, A. 1961. Morbidity and Mortality in the Koala (Phascolarctus Cinereus). Aust. J. Zool. 9(1):24–37.

    Article  Google Scholar 

  • Battini, J. L., Rasko, J. E. et al. 1999. A human cell-surface receptor for xenotropic and polytropic murine leukemia viruses: possible role in G protein-coupled signal transduction. Proc. Natl. Acad. Sci. USA 96(4):1385–1390.

    Article  PubMed  CAS  Google Scholar 

  • Belshaw, R., Pereira, V. et al. 2004. Long-term reinfection of the human genome by endogenous retroviruses. PNAS 101(14):4894–4899.

    Article  PubMed  CAS  Google Scholar 

  • Benveniste, R. E., Callahan, R. et al. 1977. Two distinct endogenous type C viruses isolated from the asian rodent Mus cericolor: Conservation of virogene sequences in related reodent species. J. Virol. 21:849–862.

    PubMed  CAS  Google Scholar 

  • Bieniasz, P. D. 2006. Late budding domains and host proteins in enveloped virus release. Virology 344(1):55–63.

    Article  PubMed  CAS  Google Scholar 

  • Boomer, S., Eiden, M. V. et al. (1997). Three distinct envelope domains, variably present in subgroup B feline leukemia virus recombinants, mediate Pit1 and Pit2 receptor recognition. J. Virol. 71:8116–8123.

    PubMed  CAS  Google Scholar 

  • Bromham, L. D. 2002. The human zoo: endogenous retroviruses in the human genome. Trends in Ecology and Evolution 17:91–97.

    Article  Google Scholar 

  • Callahan, R., Meade, C. et al. 1979. Isolation of an endogenous type C virus related to the infectious primate type C viruses from the asian rodent Vandeleuria oleracea. J. Virol. 30(1):124–131.

    PubMed  CAS  Google Scholar 

  • Canfield, P. J. 1987. Spontaneous lymphoid neoplasia in the koala (Phascolarctos cinereus). J. Comp. Path. 97:171–178.

    Article  PubMed  CAS  Google Scholar 

  • Canfield, P. J. 1990. The Biology of the Koala. Sydney, Australia: Surrey Beatty and Sons.

    Google Scholar 

  • Canfield, P. J., Sabine, J. M. et al. 1988. Virus particles associated with leukaemia in a koala. Aust. Vet. J. 65(10):327–328.

    Article  PubMed  CAS  Google Scholar 

  • Chaudry, G. J., and Eiden, M. V. 1997. Mutational analysis of the proposed gibbon ape leukemia virus binding site in Pit1 suggests that other regions are important for infection. J. Virol. 71:8078–8081.

    PubMed  CAS  Google Scholar 

  • Dalla-Favera, R., Gelmann, E. P. et al. 1981. A human onc gene homologous to the transforming gene (v-sis) of simian sarcoma virus. Nature 292(5818):31–35.

    Article  PubMed  CAS  Google Scholar 

  • De Paoli, A. and Garner, F. M. 1968. Acute lymphocytic leukemia in a white-cheeked gibbon. (Hylobates concolor). Cancer Res. 28(12):2559–2561.

    PubMed  CAS  Google Scholar 

  • Demirov, D. G. and Freed, E. O. 2004. Retrovirus budding. Virus Res. 106(2):87–102.

    Article  PubMed  CAS  Google Scholar 

  • Derks, J. P., Hofmans, L. et al. 1982. Synthesis of a viral protein with molecular weight of 30,000 (p30) by leukemic cells and antibodies cross-reacting with Simian sarcoma virus p30 in serum of a chronic myeloid leukemia patient. Cancer Res. 42(2):681–686.

    PubMed  CAS  Google Scholar 

  • Devare, S. G., Shatzman, A. et al. 1984. Expression of the PDGF-related transforming protein of simian sarcoma virus in E. coli. Cell 36(1):43–49.

    Article  PubMed  CAS  Google Scholar 

  • Dewannieux, M., Harper, F. et al. 2006. Identification of an infectious progenitor for the multiple-copy HERV-K human endogenous retroelements. Genome Res. 16(12):1548–1556.

    Article  PubMed  CAS  Google Scholar 

  • Dong, B., Kim, S. et al. 2007. An infectious retrovirus susceptible to an IFN antiviral pathway from human prostate tumors. Proc. Natl. Acad. Sci. USA 104(5):1655–1660.

    Article  PubMed  CAS  Google Scholar 

  • Dreyer, K., Pedersen, F. S. et al. 2000. A 13-amino-acid pit1-specific loop 4 sequence confers feline leukemia virus subgroup B receptor function upon Pit2. J. Virol. 74:2926–2929.

    Article  PubMed  CAS  Google Scholar 

  • Durand, D. B., Kamoun, M. et al. 1986. Retroviral activation of interleukin 2 gene in a gibbon ape T cell lymphoma line. J. Exp. Med. 164(5):1723–1734.

    Article  PubMed  CAS  Google Scholar 

  • Eglitis, M. A., Eiden, M. V. et al. 1993. Gibbon ape leukemia virus and the amphotropic murine leukemia virus 4070A exhibit an unusual interference pattern on E36 chinese hamster cells. J. Virol. 67(9):5472–5477.

    PubMed  CAS  Google Scholar 

  • Eiden, M. V., Farrell, K. B. et al. 1996. Substitution of a single amino acid residue is sufficient to allow the human amphotropic murine leukemia virus receptor to function as a gibbon ape leukemia virus receptor. J. Virol. 70(2):1080–1085.

    PubMed  CAS  Google Scholar 

  • Farrell, K. B., and Eiden, M. V. 2005. Dissection of gammaretroviral receptor function by using type III phosphate transporters as models. J. Virol. 79(14):9332–9336.

    Article  PubMed  CAS  Google Scholar 

  • Farrell, K. B., Russ, J. L. et al. 2002. Reassessing the role of region A in Pit1-mediated viral entry. J. Virol. 76:7683–7693.

    Article  PubMed  CAS  Google Scholar 

  • Farrell, K. B., Ting, Y.-T. et al. 2002. Fusion-defective gibbon ape leukemia virus vectors can be rescued by homologous but not heterologous soluble envelope proteins. J. Virol. 76:4267–4274.

    Article  PubMed  CAS  Google Scholar 

  • Farrell, K. B., Tusnady, G. E. et al. 2009. A new structural arrangement of the extracellular regions of the phosphate transporter SLC20A1, the receptor for gibbon ape Leukemia virus. J. Biol. Chem.

    Google Scholar 

  • Feldmann, H., Czub, M. et al. 2002. Emerging and re-emerging infectious diseases. Med. Microbiol. Immunol. 191(2):63–74.

    Article  PubMed  Google Scholar 

  • Ferreri, A. J., Guidoboni, M. et al. 2004. Evidence for an association between Chlamydia psittaci and ocular adnexal lymphomas. J. Natl. Cancer Inst. 96(8):586–594.

    Article  PubMed  Google Scholar 

  • Fiebig, U., Hartmann, M. G. et al. 2006. Transspecies transmission of the endogenous koala retrovirus. J. Virol. 80(11):56515654.

    Article  Google Scholar 

  • Galili, U., Shohet, S. B. et al. 1988. Man, apes, and Old World monkeys differ from other mammals in the expression of alpha-galactosyl epitopes on nucleated cells. J. Biol. Chem. 263(33):17755–17762.

    PubMed  CAS  Google Scholar 

  • Gallagher, R. E. and Gallo, R. C. 1975. Type C RNA tumor virus isolated from cultured human acute myelogenous leukemia cells. Science 187(4174):350–353.

    Article  PubMed  CAS  Google Scholar 

  • Goff, S. P. 2004. Genetic control of retrovirus susceptibility in mammalian cells. Annu. Rev. Genet. 38:61–85.

    Article  PubMed  CAS  Google Scholar 

  • Guenet, J. L. and Bonhomme, F. 2003. Wild mice: an ever-increasing contribution to a popular mammalian model. Trends Genet. 19(1):24–31.

    Article  PubMed  CAS  Google Scholar 

  • Hahn, B. H., Shaw, G. M. et al. 2000. AIDS as a zoonosis: scientific and public health implications. Science 287(5453):607–614.

    Article  PubMed  CAS  Google Scholar 

  • Hanger, J. 1999. An investigative role of retroviruses in leukaemia and related diseases in koalas. Veterinary Pathology and Anatomy. Brisbane Australia: University of Queensland, p. 235.

    Google Scholar 

  • Hanger, J., McKee, J. et al. 2003. Cancer and Haematological Disease in Koalas: A Clinical and Virological Update. Proc. Annu. Conf. Austr. Assoc. Vet. Conserv Biol.:19–37.

    Google Scholar 

  • Hanger, J. J., Bromham, L. D. et al. 2000. The nucleotide sequence of koala (Phasocolarctos cinereus) retrovirus: a novel type C endogenous virus related to gibbon ape leukemia virus. J. Virol. 74:4264–4272.

    Article  PubMed  CAS  Google Scholar 

  • Hein, S., Prassolov, V. et al. 2003. Sodium-dependent myo-inositol transporter 1 is a cellular receptor for Mus cervicolor M813 murine leukemia viruses. J. Virol. 77:5926–5932.

    Article  PubMed  CAS  Google Scholar 

  • Henderson, L. E., Hewetson, J. F. et al. 1983. A rapid, large scale purification procedure for gibbon interleukin 2. J. Immunol. 131(2):810–815.

    PubMed  CAS  Google Scholar 

  • Hong, S., Klein, E. A. et al. 2009. Fibrils of prostatic acid phosphatase fragments boost infections with XMRV (xenotropic murine leukemia virus-related virus), a human retrovirus associated with prostate cancer. J. Virol. 83(14):6995–7003.

    Article  PubMed  CAS  Google Scholar 

  • Johann, S. V., Zeijl, M. v. et al. 1993. Definition of a domain of GLVR1 which is necessary for infection by gibbon ape leukemia virus and which is highly polymorphic between species. J. Virol. 67(11):6733–6736.

    PubMed  CAS  Google Scholar 

  • Johnsen, D. O., Wooding, W. L. et al. 1971. Malignant lymphoma in the gibbon. J. Amer. Vet. Med. Assoc. 159:563–566.

    CAS  Google Scholar 

  • Josephs, S. F., Guo, C. et al. 1984. Human-proto-oncogene nucleotide sequences corresponding to the transforming region of simian sarcoma virus. Science 223(4635):487–491.

    Article  PubMed  CAS  Google Scholar 

  • Kavanaugh, M. P., Miller, D. G. et al. 1994. Cell-surface receptors for gibbon ape leukemia virus and amphotropic murine retrovirus are inducible sodium-dependent phosphate symporters. Proc. Natl. Acad. Sci. USA 91:7071–7075.

    Article  PubMed  CAS  Google Scholar 

  • Kawakami, T., Huff, S. D. et al. 1972. C-type virus associated with gibbon lymphosarcoma. Nature New Biol. 235:170–171.

    Article  PubMed  CAS  Google Scholar 

  • Kawakami, T. G. and Buckley, P. M. 1974. Antigenic studies on gibbon type-C viruses. Transplant Proc. 6(2):193–196.

    PubMed  CAS  Google Scholar 

  • Kawakami, T. G., Buckley, P. M. et al. 1973. Antibodies to simian C-type virus antigen in sera of gibbons (Hylobates sp.). Nature New Biol. 246:105–107.

    Article  PubMed  CAS  Google Scholar 

  • Kawakami, T. G., Kollias, Jr. G. V. et al. 1980. Oncogenicity of gibbon type-C myelogenous leukemia virus. Int. J. Cancer 25(5):641–646.

    Article  PubMed  CAS  Google Scholar 

  • Kawakami, T. G., Sun, L. et al. 1977. Infectious primate type-C virus shed by healthy gibbons. Nature 268(5619):448–450.

    Article  PubMed  CAS  Google Scholar 

  • Kawakami, T. G., Sun, L. et al. 1978. Natural transmission of gibbon leukemia virus. J. Natl. Cancer Inst. 61(4):1113–1115.

    PubMed  CAS  Google Scholar 

  • Knerr, I., Beinder, E. et al. 2002. Syncytin, a novel human endogenous retroviral gene in human placenta: Evidence for it s dysregulation in preeclampsia and HELLP syndrome. Am. J. Obstet. Gynecol. 186:210–213.

    Article  PubMed  CAS  Google Scholar 

  • Kuiken, T., Leighton, F. A. et al. 2005. Public health. Pathogen surveillance in animals. Science 309(5741):1680-1681.

    Article  PubMed  CAS  Google Scholar 

  • Lander, E. S., Linton, L. M. et al. 2001. Initial sequencing and analysis of the human genome. Nature 409(6822):860–921.

    Article  PubMed  CAS  Google Scholar 

  • Lieber, M., Scherr, C. J. et al. 1975. Isolation from the asian mouse Mus Caroli of an endogenous type C virus related to infectious primate type C viruses. Proc. Natl. Acad. Sci. USA 72(6):2315–2319.

    Article  PubMed  CAS  Google Scholar 

  • Martin, J., Herniou, E. et al. 1999. Interclass transmission and phyletic host tracking in murine leukemia virus-related retroviruses. J. Virol. 73:2442–2449.

    PubMed  CAS  Google Scholar 

  • Mi, S., Lee, X. et al. 2000. Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 403:785–789.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, H. W., Miller, M. et al. 2006. Implications of simian retroviruses for captive primate population management and the occupational safety of primate handlers. J. Zoo. Wildl. Med. 37(3):219–233.

    Article  PubMed  Google Scholar 

  • O’Hara, B., Johann, S. V. et al. 1990. Characterization of a human gene conferring sensitivity to infection by gibbon ape leukemia virus. Cell Growth Differ. 1(3):119-127.

    PubMed  Google Scholar 

  • Olah, Z., Lehel, C. et al. 1994. The cellular receptor for gibbon ape leukemia virus is a novel high affinity phosphate transporter. J. Biol. Chem. 269:25426–25431.

    PubMed  CAS  Google Scholar 

  • Oliveira, N. M., Farrell, K. B. et al. 2006. In vitro characterization of a koala retrovirus. J. Virol. 80(6):3104–3107.

    Article  PubMed  CAS  Google Scholar 

  • Oliveira, N. M., Satija, H. et al. 2007. Changes in viral protein function that accompany retroviral endogenization. Proc. Natl. Acad. Sci. USA 104(44):17506–17511.

    Article  PubMed  CAS  Google Scholar 

  • Overbaugh, J., Miller, A. D. et al. 2001. Receptors and entry cofactors for retroviruses include single and multiple transmembrane spanning proteins as well as newly described GPI-anchored and secreted proteins. Micro. Mol. Biol. Rev. 65:371–389.

    Article  CAS  Google Scholar 

  • Panem, S., Prochownik, E. V. et al. 1975. Isolation of type C virions from a normal human fibroblast strain. Science 189(4199):297–299.

    Article  PubMed  CAS  Google Scholar 

  • Parent, I., Qin, Y. et al. 1998. Characterization of a C-type retrovirus isolated from an HIV infected cell line: complete nucleotide sequence. Arch. Virol. 143(6):1077–1092.

    Article  PubMed  CAS  Google Scholar 

  • Pech, M., Gazit, A. et al. 1989. Generation of fibrosarcomas in vivo by a retrovirus that expresses the normal B chain of platelet-derived growth factor and mimics the alternative splice pattern of the v-sis oncogene. Proc. Natl. Acad. Sci. USA 86(8):2693–2697.

    Article  PubMed  CAS  Google Scholar 

  • Potapova, O., Fakhrai, H. et al. 1996. Growth factor PDGF-B/v-sis confers a tumorigenic phenotype to human tumor cells bearing PDGF receptors but not to cells devoid of receptors: evidence for an autocrine, but not a paracrine, mechanism. Int. J. Cancer 66(5):669-677.

    Article  PubMed  CAS  Google Scholar 

  • Reitz, M. S., Voltin, M. et al. 1980. Characterization of a partial provirus from a gibbon ape naturally infected with gibbon ape leukemia virus. Virology 104:474–481.

    Article  PubMed  CAS  Google Scholar 

  • Reitz, M. S., Wong-Staal, F. et al. 1979. Gibbon ape leukemia virus-Hall’s Island: Strain of gibbon ape leukemia virus. J. Virol. 29(1):395–400.

    PubMed  Google Scholar 

  • Ronquist, F. and Huelsenbeck, J. P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12):1572–1574.

    Article  PubMed  CAS  Google Scholar 

  • Saier, M. H., Jr. 2000. A functional-phylogenetic classification system for transmembrane solute transporters. Microbiol. Mol. Biol. Rev. 64(2):354–411.

    Article  PubMed  CAS  Google Scholar 

  • Schneiderman, R. D., Farrell, K. B.et al. 1996. The Japanese feral mouse PiT1 and PiT2 homologs lack an acidic residue at position 550 but still function as gibbon ape leukemia virus receptors: Implications for virus binding motif. J. Virol. 70:6982–6986.

    PubMed  CAS  Google Scholar 

  • Scolnick, E. M. and Parks, W. P. 1973. Isolation and characterization of a sarcoma virus primate virus: Mechanism of rescue. Int. J. Cancer 12:138–147.

    Article  PubMed  CAS  Google Scholar 

  • Slattery, J. P., Franchini, G. et al. 1999. Genomic evolution, patterns of global dissemination, and interspecies transmission of human and simian T-cell leukemia/lymphotropic viruses. Genome Res. 9(6):525–540.

    PubMed  CAS  Google Scholar 

  • Slik, J. W. 2004. El Nino droughts and their effects on tree species composition and diversity in tropical rain forests. Oecologia 141(1):114–120.

    Article  PubMed  CAS  Google Scholar 

  • Sommerfelt, M. A. and Weiss, R. A. 1990. Receptor interference groups of 20 retroviruses plating on human cells. Virology 176:58–69.

    Article  PubMed  CAS  Google Scholar 

  • Sugai, J., Eiden, M. et al. 2001. Identification of envelope determinants of feline leukemia virus subgroup B that permit infection and gene transfer to cells expressing human Pit1 or Pit2. J. Virol. 75:6841–6849.

    Article  PubMed  CAS  Google Scholar 

  • Tailor, C. S., Nouri, A. et al. 1999. Cloning and characterization of a cell surface receptor for xenotropic and polytropic murine leukemia viruses. Proc. Natl. Acad. Sci. USA 96(3):927–932.

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi, Y., Cosset, F.-L. C. et al. 1994. Type C retrovirus inactivation by complement is determined by both the viral genome and the producer cell. J. Virol. 68(12):8001–8007.

    PubMed  CAS  Google Scholar 

  • Takeuchi, Y., Vile, R. G. et al. 1992. Feline leukemia virus subgroup B uses the same cell surface receptor as gibbon ape leukemia virus. J. Virol. 66(2):1219–1222.

    PubMed  CAS  Google Scholar 

  • Tarlinton, R., Meers, J. et al. 2005. Real-time reverse transcriptase PCR for the endogenous koala retrovirus reveals an association between plasma viral load and neoplastic disease in koalas. J. Gen. Virol. 86(Pt 3):783–787.

    Article  PubMed  CAS  Google Scholar 

  • Tarlinton, R. E., Meers, J. et al. 2006. Retroviral invasion of the koala genome. Nature 442(7098):79–81.

    Article  PubMed  CAS  Google Scholar 

  • Teich, N. (1982). RNA Tumor Viruses. In Cold Spring Harbor Monograph Series, eds. R. Weiss, N. Teich, H. Varmus, and J. Coffin, pp. 130–137 Cold Spring Harbor: Cold Spring Harbor Laboratory

    Google Scholar 

  • Theilen, G. H., Gould, D. et al. 1971. C-type virus in tumor tissue of a woolly monkey [lagothix spp.] with fibrosarcoma. J. Natl. Cancer Inst. 47:881–885.

    PubMed  CAS  Google Scholar 

  • Ting, Y.-T., Wilson, C. A. et al. 1998. Simian sarcoma-associated virus fails to infect Chinese hamster cells despite the presence of functional gibbon ape leukemia virus receptors. J. Virol. 72:9453–9458.

    PubMed  CAS  Google Scholar 

  • Todaro, G. J., Lieber, M. M. et al. 1975. Infectious primate type C viruses: Three isolates belonging to a new subgroup from the brains of normal gibbons. Virology 67(2):335–343.

    Article  PubMed  CAS  Google Scholar 

  • Urisman, A., Molinaro, R. J. et al. 2006. Identification of a novel Gammaretrovirus in prostate tumors of patients homozygous for R462Q RNASEL variant. PLoS Pathog. 2(3):e25.

    Article  PubMed  Google Scholar 

  • Virkki, L. V., Biber, J. et al. 2007. Phosphate transporters: a tale of two solute carrier families. Am. J. Physiol. Renal. Physiol. 293(3):F643–F654.

    Article  PubMed  CAS  Google Scholar 

  • Waterfield, M. D., Scrace, G. T. et al. 1983. Platelet-derived growth factor is structurally related to the putative transforming protein p28sis of simian sarcoma virus. Nature 304(5921):35–39.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, C. and Eiden, M. 1991. Viral and cellular factors governing hamster cell infection by murine and gibbon ape leukemia viruses. J. Virol. 65(11):5975–5982.

    PubMed  CAS  Google Scholar 

  • Wolfe, L. G., Deinhardt, F. et al. 1971. Induction of tumors in marmoset monkeys by simian sarcoma virus, type 1 (Lagothrix): a preliminary report. J. Natl. Cancer Inst. 47(5):1115–1120.

    PubMed  CAS  Google Scholar 

  • Wong-Staal, F., Dalla-Favera, R. et al. 1981. The v-sis transforming gene of simian sarcoma virus is a new onc gene of primate origin. Nature 294(5838):273–275.

    Article  PubMed  CAS  Google Scholar 

  • Worley, M., Rideout, B. et al. 1993. Opportunistic infections, cancer and hematologic disorders associated with retrovirus infection in the koalas. Proc. Annu. Meet. Am. Assoc. Zoo. Vet. 1:181–182.

    Google Scholar 

  • Yang, Y. L., Guo, L. et al. 1999. Receptors for polytropic and xenotropic mouse leukaemia viruses encoded by a single gene at Rmc1. Nat. Genet. 21(2):216–219.

    Article  PubMed  Google Scholar 

  • Yonekawa, H., Moriwaki, K. et al. 1988. Hybrid origin of Japanese mice “Mus musculus molossinus”: evidence from restriction analysis of mitochondrial DNA. Mol. Biol. Evol. 5(1):63–78.

    PubMed  CAS  Google Scholar 

  • Yuan, B., Campbell, S. et al. 2000. Infectivity of Moloney murine leukemia virus defective in late assembly events is restored by late assembly domains of other retroviruses. J. Virol. 74(16):7250–7260.

    Article  PubMed  CAS  Google Scholar 

  • Zeijl, M. v., Johann, S. V. et al. 1994. An amphotropic virus receptor is a second member of the gibbon ape leukemia virus receptor family. Proc. Natl. Acad. Sci. U S A 91:1168–1172.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maribeth V. Eiden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Eiden, M.V., Taliaferro, D.L. (2010). Emerging Retroviruses and Cancer. In: Dudley, J. (eds) Retroviruses and Insights into Cancer. Springer, New York, NY. https://doi.org/10.1007/978-0-387-09581-3_11

Download citation

Publish with us

Policies and ethics