Skip to main content

Microarchitectural Characterization of the Aortic Heart Valve

  • Conference paper
Biomaterials

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 553))

Abstract

Cardiovascular disease has become a global epidemic. It has been estimated by the World Health Organization that 16.6 million people die from cardiovascular disease annually1. Aortic heart valve disease, which can lead to heart failure, constitutes a high percentage of these deaths and every year approximately 60,000 aortic heart valve replacements are implanted in the US and 170,000 worldwide2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. WHO, The World Health Report 2002, Reducing risks, promoting healthy life. 2002, World Health Organisation. p. 188 (Annex 2).

    Google Scholar 

  2. Schoen, F.J.,1995, Approach to the analysis of cardiac valve prostheses as surgical pathology or autopsy specimens. Cardiovasc Pathol, 4: 241–255.

    Article  Google Scholar 

  3. Gross, L. and Kugel, M.A., 1931, Topographic anatomy and histology of the valves in the human heart Am J Pathol, 7: 445–456.

    Google Scholar 

  4. Vesely, I. and Boughner, D., 1989, Analysis of the bending behaviour of porcine xenograft leaflets and of neutral aortic valve material: bending stiffness, neutral axis and shear measurements. J Biomech, 22(6–7): 655–671.

    Article  Google Scholar 

  5. Song, S.H., Vesely, I., and Doughner, D.R., 1990, Effects of dynamic fixation on the shear behaviour of porcine xenograft valves. Biomaterials, 11: 191–196.

    Article  Google Scholar 

  6. Vesely, I., 2003, The evolution of bioprosthetic heart valve design and its impact on durability. Cardiovasc Pathol, 12(5): 277–286.

    Article  Google Scholar 

  7. Booth, C., Korossis, S.A., Wilcox, H.E., Watterson, K.G., Kearney, J.N., Fisher, J., and Ingham, E., 2002, Tissue engineering of cardiac valve prostheses I: development and histological characterization of an acellular porcine scaffold. J Heart Valve Dis, 11(4): 457–462.

    Google Scholar 

  8. Maish, M.S., Hoffman-Kim, D., Krueger, P.M., Souza, J.M., Harper, J.J., 3rd, and Hopkins, R.A., 2003, Tricuspid valve biopsy: a potential source of cardiac myofibroblast cells for tissue-engineered cardiac valves. J Heart Valve Dis. 12(2): 264–269.

    Google Scholar 

  9. Cimini, M., Rogers, K.A., and. Boughner, D.R., 2003, Smoothelin-positive cells in human and porcine semilunar valves. Histochem Cell Biol, 120(4): 307–317.

    Article  Google Scholar 

  10. Flanagan, T.C., Mulvihill, A., Black, A., Jockenhoevel, S, and Pandit, A., 2003, Characterisation of mitral valve interstitial cells and endocardial cells in 2-D and 3-D culture. Int Artif Organs, 26: 584.

    Google Scholar 

  11. Wiester, L.M. and Giachelli, C.M., 2003, Expression and function of the integrin alpha9betal in bovine aortic valve interstitial cells. J Heart Valve Dis, 12(5): 605–616.

    Google Scholar 

  12. Whitson, B.A., Cheng, B.C., Kokini, K., Badylak, S.F., Patel, U., Morff, R., and O’Keefe, C.R., 1998, Multilaminate resorbable biomedical device under biaxial loading. J Biomed Mater Res, 43(3): 277–281.

    Article  Google Scholar 

  13. Sacks, M.S. and Gloeckner, D.C., 1999, Quantification of the fiber architecture and biaxial mechanical behaviour of porcine intestinal submucosa. J Biomed Mater Res, 46: 1–10.

    Article  Google Scholar 

  14. Gloeckner, D.C., Sacks, M.S., Billiar, K.L., and Bachrach, N., 2000, Mechanical evaluation and design of a multilayered collagenous repair biomaterial. J Biomed Mater Res, 52(2): 365–373.

    Article  Google Scholar 

  15. Cebotari, S., Mertsching, H., Kallenbach, K., Kostin, S., Repin, O., Batrinac, A., Kleczka, C., Ciubotaru, A., and Haverich, A., 2002, Construction of autologous human heart valves based on an acellular allograft matrix. Circulation, 106(12 Suppl 1): 163–168.

    Google Scholar 

  16. Korossis, S.A., Booth, C., Wilcox, H.E., Watterson, K.G., Kearney, J.N., Fisher, J., and Ingham, E., 2002, Tissue engineering of cardiac valve prostheses II: biomechanical characterization of decellularized porcine aortic heart valves. J Heart Valve Dis, 11(4): 463–471.

    Google Scholar 

  17. Sodian, R., Sperling, J.S., Martin, D.P., Egozy, A., Stock, U., Mayer, J.E., Jr., and Vacanti, J.P., 2000, Fabrication of a trileaflet heart valve scaffold from a polyhydroxyalkanoate biopolyester for use in tissue engineering. Tissue Eng, 6(2): 183–188.

    Article  Google Scholar 

  18. Nuttelman, C.R., Henry, S.M., and Anseth, K.S., 2002, Synthesis and characterization of photocrosslinkable, degradable poly(vinyl alcohol)-based tissue engineering scaffolds. Biomaterials, 23(17): 3617–3626.

    Article  Google Scholar 

  19. Dorland, I. and Newman, W.A., 2003, Dorland’s Illustrated Medical Dictionary, Saunders: Philadelphia, 388.

    Google Scholar 

  20. Vesely, I., 1998, The role of elastin in aortic valve mechanics. J Biomech, 31:115–123.

    Article  Google Scholar 

  21. Bashey, R.I., Torii, S., and Angrist, A., 1967, Age-related collagen and elastin content of human heart valves. J Gerontol, 22(2): 203–208.

    Article  Google Scholar 

  22. Chew, P.H., Yin, F.C., and Zeger, S.L., 1986, Biaxial stress-strain properties of canine pericardium. J Mo1 Cell Cardiol, 18(6): 567–578.

    Article  Google Scholar 

  23. Thubrikar M.J. 1990. The aortic valve. CRC Press: Boca Raton. FL.. 23–24.

    Google Scholar 

  24. Petersen, W. and Tillmann, B., 1998, Collagenous fibril texture of the human knee joint menisci. Anat Embryol (Berl), 197(4): 317–324.

    Article  Google Scholar 

  25. Goldman, H.M., Blayvas, A., Boyde, A., Howell, P.G., Clement, J.G., and Bromage, T.G., 2000, Correlative light and backscattered electron microscopy of bone--part II: automated image analysis. Scanning, 22(6): 337–344.

    Article  Google Scholar 

  26. Alvisi, C., Bigi, A., Pallotti, C., Pallotti, G., Re, G., and Roveri, N., 1982, Carotid wall as an isotropic mechanical system. Neurol Res, 4(1–2): 47–61.

    Google Scholar 

  27. Chang, S.L., Howard, P.S., Koo, H.P., and Macarak, E.J., 1998, Role of type III collagen in bladder filling. Neurourol Urodyn, 17(2): 135–145.

    Article  Google Scholar 

  28. Xia, Y. and Elder, K., 2001, Quantification of the graphical details of collagen fibrils in transmission electron micrographs. J Microsc. 204(Pt 1): 3–16.

    Article  MathSciNet  Google Scholar 

  29. Sacks, M.S. and Smith, D.B., 1998, Effects of accelerated testing on porcine bioprosthetic heart valve fiber architecture. Biomaterials, 19(11–12): 1027–1036.

    Article  Google Scholar 

  30. Sacks, M.S. and Schoen, F.J., 2002, Collagen fiber disruption occurs independent of calcification in clinically explanted bioprosthetic heart valves. J Biomed Mater Res, 62(3): 359–371.

    Article  Google Scholar 

  31. Whittaker, P., 1995,Polarised light microscopy in biomedical research. Microscopy and analysis, (1): 15–17.

    Google Scholar 

  32. Whittaker, P., Kloner, R.A., Boughner, D.R., and Pickering, J.G., 1994, Quantitative assessment of myocardial collagen with picrosirius red staining and circularly polarized light Basic Res Cardiol, 89(5): 397–410.

    Article  Google Scholar 

  33. Inoue, S., 1953, Polarisation optical studies of the mitotic spindle. 1. The demonstration of spindle fibres in living cells. Chromosoma, 5: 487–500.

    Article  Google Scholar 

  34. Arokoski, J.P., Hyttinen, M.M., Lapvetelainen, T., Takacs, P., Kosztaczky, B., Modis, L., Kovanen, V., and Helminen, H., 1996, Decreased birefringence of the superficial zone collagen network in the canine knee (stifle) articular cartilage after long distance running training, detected by quantitative polarised light microscopy. Ann Rheum Dis, 55(4): 253–264.

    Article  Google Scholar 

  35. Jacques, S.L., Roman, J.R., and Lee, K., 2000, Imaging superficial tissues with polarized light. Lasers Surg Med, 26(2): 119–129.

    Article  Google Scholar 

  36. Hielscher, A.J., Eick, A.A., Mourant, J.R., Shen, D., Freyer, J., and Bigio, I.J., 1997, Diffuse backscattering Mueller matrices of highly scattering media. Opt Express, 1: 441–153.

    Article  Google Scholar 

  37. Darracott-Cankovic, S., Stovin, P.G., Wheeldon, D., Wallwork, J., Wells, F., and T.A. English, T.A., 1989, Effect of donor heart damage on survival after transplantation. Eur J Cardiothorac Surg, 3(6): 525–532.

    Article  Google Scholar 

  38. Billiar, K.L. and Sacks, M.S., 2000, Biaxial mechanical properties of the natural and glutaraldehyde treated aortic valve cusp-Part I: Experimental results. J Biomech Eng, 122(1): 23–30.

    Article  Google Scholar 

  39. Millington, P.F., Gibson, T., E.J. H., and Barbenel, J.C., 1971, Structural and mechanical aspects of connective tissue. Adv Biomed Eng, 1: 189–248.

    Article  Google Scholar 

  40. Kunzelman, K.S. and Cochran, R.P., 1992, Stress/strain characteristics of porcine mitral valve tissue: parallel versus perpendicular collagen orientation. J Card Surg, 7(1): 71–78.

    Article  Google Scholar 

  41. Reihsner, R. and Menzel, E.J., 1998, Two-dimensional stress-relaxation behavior of human skin as influenced by non-enzymatic glycation and the inhibitory agent aminoguanidine. J Biomech, 31(11): 985–993.

    Article  Google Scholar 

  42. Fung, Y.C., 1993, Biomechanics — Mechanical properties of living tissues. New York: Springer, 295–298.

    Google Scholar 

  43. Carew, E.O., Patel, J., Garg, A., Houghtaling, P., Blackstone, E., and Vesely, I., 2003, Effect of specimen size and aspect ratio on the tensile properties of porcine aortic valve tissues. Ann Biomed Eng, 31(5): 526–535.

    Article  Google Scholar 

  44. Vito, R.P., 1980, The mechanical properties of soft tissues-I: A mechanical system for biaxial testing. J Biomech, 13: 947–950.

    Article  Google Scholar 

  45. Vito, R.P.,1979, The role of the pericardium in cardiac mechanics. J Biomech, 12(8): 587–592.

    Article  Google Scholar 

  46. Choi, H.S. and Vito, R.P., 1990, Two-dimensional stress-strain relationship for canine pericardium. J Biomech Eng, 112(2): 153–159.

    Article  Google Scholar 

  47. van Noort, R., Yates, S.P., Martin, T.R., Barker, A.T., and Black, M.M., 1982, A study of the effects of glutaraldehyde and formaldehyde on the mechanical behaviour of bovine pericardium. Biomaterials, 3(1): 21–26.

    Article  Google Scholar 

  48. Langdon, S.E., Chernecky, R., Pereira, C.A., Abdulla, D., and Lee, J.M., 1999, Biaxial mechanical/structural effects of equibiaxial strain during crosslinking of bovine pericardial xenograft materials. Biomaterials, 20(2): 137–153.

    Article  Google Scholar 

  49. Lo, D. and Vesely, I., 1995, Biaxial strain analysis of the porcine aortic valve. Ann Thorac Surg, 60(2 Suppl): S374–378.

    Article  Google Scholar 

  50. Christie, G.W. and Barratt-Boyes, B.G., 1995, Mechanical properties of porcine pulmonary valve leaflets: How do they differ from aortic valve leaflets? Ann Thorac Surg, 60: 195–199.

    Article  Google Scholar 

  51. Carew, E.O. and Vesely, I., 2003, A new method of estimating gauge length for porcine aortic valve test specimens. J Biomech, 36(7): 1039–1042.

    Article  Google Scholar 

  52. Christie, G.W. and Barratt-Boyes, B.G., 1995, Biaxial mechanical properties of explanted aortic allograft leaflets. Ann Thorac Surg, 60: 160–164.

    Article  Google Scholar 

  53. Billiar, K.L. and Sacks, M.S., 2000, Biaxial mechanical properties of the native and glutaraldehyde-treated aortic valve cusp: Part II-A structural constitutive model, J Biomech Eng, 122(4): p. 327–35.

    Article  Google Scholar 

  54. Wells, S.M. and Sacks, M.S., 2002, Effects of fixation pressure on the biaxial mechanical behavior of porcine bioprosthetic heart valves with long-term cyclic loading. Biomaterials, 23(11): 2389–2399.

    Article  Google Scholar 

  55. Ozkaya and Nordin, 1999, Fundamentals of biomechanics (Equilibrium, motion and deformation). Springer-Verlag Inc: New-York, 205–206.

    Book  Google Scholar 

  56. Tower, T.T. and Tranquillo, R.T., 2001, Alignment maps of tissues: 1. Microscopic elliptical polarimetry. Biophys J, 81: 2954–2963.

    Article  Google Scholar 

  57. Tower, T.T. and Tranquillo, R.T., 2001, Alignment maps of tissues: 2. Fast harmonic analysis for imaging. Biophys J, 81: 2964–2971.

    Article  Google Scholar 

  58. Tower, T.T., Neidert, M.R., and Tranquillo, R.T., 2002, Fiber alignment imaging during mechanical testing of soft tissues. Ann Biomed Eng, 30: 1221–1233.

    Article  Google Scholar 

  59. Billiar, K.L. and Sacks, M.S., 1997, A method to quantify the fiber kinematics of planar tissues under biaxial stretch. J Biomech, 30(7): 753–756.

    Article  Google Scholar 

  60. Sacks, M.S., He, Z., Baijens, L., Wanant, S., Shah, P., Sugimoto, H., and Yoganathan, A.P., 2002, Surface strains in the anterior leaflet of the functioning mitral valve. Ann Biomed Eng, 30: 1281–1290.

    Article  Google Scholar 

  61. Duncan, A.C., Boughner, D., and Vesely, I., 1996, Dynamic glutaraldehyde fixation of a porcine aortic valve xenograft. I. Effect of fixation conditions on the final tissue viscoelastic properties. Biomaterials, 17(19): 1849–1856.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this paper

Cite this paper

Brody, S., Pandit, A. (2004). Microarchitectural Characterization of the Aortic Heart Valve. In: Hasirci, N., Hasirci, V. (eds) Biomaterials. Advances in Experimental Medicine and Biology, vol 553. Springer, Boston, MA. https://doi.org/10.1007/978-0-306-48584-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-0-306-48584-8_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0988-9

  • Online ISBN: 978-0-306-48584-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics