Skip to main content

Rab GTPases in Plant Endocytosis

  • Chapter
  • First Online:
Plant Endocytosis

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 1))

  • 225 Accesses

Abstract

The Rab family is part of the Ras superfamily of small GTPases. In eukaryotes Rab GTPases are present as members of gene families, and the different Rab GTPase isoforms are localized specific intracellular membranes, where they function as regulators of distinct steps in membrane traffic pathways. They perform these regulatory functions through the specific recruitment of cytosolic effector proteins onto membranes. This recruitment occurs when the Rab GTPase is in the GTP-bound, or active, form. Through these recruited effector proteins, Rab GTPases regulate many aspects of membrane trafficking including vesicle formation, actin- and tubulin-dependent vesicle movement, and membrane fusion. The recent sequencing of complete genomic sequences from animal, yeast, and plant organisms has revealed that a number of Rab GTPase families are conserved from yeast to animals and plants. The plant model system, Arabidopsis thaliana, contains 57 Rab GTPases, of which 40 distinct Rab GTPase members of four subfamilies RabA (26 members), RabC (three members), RabF (three members), and RabG (eight members) share significant similarity with Rab GTPases implicated in endocytic events in animals and yeast. In this review we will highlight recent observations of the function of some of these plant Rab GTPases during endocytosis in plants, and discuss possible roles of plant endocytic Rab GTPases in relation to what is currently known in animal and yeast systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abeliovich H, Darsow T, Emr SD (1999) Cytoplasm to vacuole trafficking of aminopeptidase I requires a t-SNARE-Sec 1 p complex composed of Tlg2p and Vps45p. EMBO J 18:6005–6016

    Article  PubMed  Google Scholar 

  2. Aniento F, Emans N, Griffiths G, Gruenberg J (1993) Cytoplasmic dynein-dependent vesicular transport from early to late endosomes. J Cell Biol 123:1373–1387

    Article  PubMed  Google Scholar 

  3. Baggett JJ, Wendland B (2001) Clathrin function in yeast endocytosis. Traffic 2:297–302

    Article  PubMed  Google Scholar 

  4. Baluška F, Šamaj J, Hlavacka A, Kendrick-Jones J, Volkmann D (2004) Actin-dependent fluid-phase endocytosis in inner cortex cells of maize root apices. J Exp Bot 55:463–473

    Article  PubMed  Google Scholar 

  5. Baluška F, Hlavacka A, Šamaj J, Palme K, Robinson DG, Matoh T, McCurdy DW, Menzel D, Volkmann D (2002) F-actin-dependent endocytosis of cell wall pectins in meristematic root cells. Insights from brefeldin A-induced compartments. Plant Physiol 130:422–431

    Article  PubMed  Google Scholar 

  6. Benli M, Doring F, Robinson DG, Yang X, Gallwitz D (1996) Two GTPase isoforms, Ypt31p and Ypt32p, are essential for Golgi function in yeast. EMBO J 15:6460–6475

    PubMed  Google Scholar 

  7. Blackbourn HD, Jackson AP (1996) Plant clathrin heavy chain: sequence analysis and restricted localisation in growing pollen tubes. J Cell Sci 109:777–786

    PubMed  Google Scholar 

  8. Boehm M, Bonifacino JS (2001) Adaptins: the final recount. Mol Biol Cell 12:2907–2920

    PubMed  Google Scholar 

  9. Bolte S, Talbot C, Boutte Y, Catrice O, Read ND, Satiat-Jeunemaitre B (2004) FM-dyes as experimental probes for dissecting vesicle trafficking in living plant cells. J Microsc 214:159–173

    Article  PubMed  MathSciNet  Google Scholar 

  10. Borg S, Brandstrup B, Jensen TJ, Poulsen C (1997) Identification of new protein species among 33 different small GTP-binding proteins encoded by cDNAs from Lotus japonicus, and expression of corresponding mRNAs in developing root nodules. Plant J 11:237–250

    Article  PubMed  Google Scholar 

  11. Bucci C, Thomsen P, Nicoziani P, McCarthy J, van Deurs B (2000) Rab7: a key to lysosome biogenesis. Mol Biol Cell 11:467–480

    PubMed  Google Scholar 

  12. Bucci C, Parton RG, Mather IH, Stunnenberg H, Simons K, Hoflack B, Zerial M (1992) The small GTPase rab5 functions as a regulatory factor in the early endocytic pathway. Cell 70:715–728

    Article  PubMed  Google Scholar 

  13. Chavrier P, Parton RG, Hauri HP, Simons K, Zerial M (1990) Localization of low molecular weight GTP binding proteins to exocytic and endocytic compartments. Cell 62:317–329

    Article  PubMed  Google Scholar 

  14. Chen SH, Chen S, Tokarev AA, Liu F, Jedd G, Segev N (2005) Ypt31=32 GTPases and their novel F-box effector protein Rcy1 regulate protein recycling. Mol Biol Cell 16:178–192

    Article  PubMed  Google Scholar 

  15. Chen W, Feng Y, Chen D, Wandinger-Ness A (1998) Rab11 is required for trans-golgi network-to-plasma membrane transport and a preferential target for GDP dissociation inhibitor. Mol Biol Cell 9:3241–3257

    PubMed  Google Scholar 

  16. Christoforidis S, Miaczynska M, Ashman K, Wilm M, Zhao L, Yip SC, Waterfield MD, Backer JM, Zerial M (1999) Phosphatidylinositol-3-OH kinases are Rab5 effectors. Nat Cell Biol 1:249–252

    Article  PubMed  Google Scholar 

  17. Cox D, Lee DJ, Dale BM, Calafat J, Greenberg S (2000) A Rab11-containing rapidly recycling compartment in macrophages that promotes phagocytosis. Proc Natl Acad Sci USA 97:680–685

    Article  PubMed  Google Scholar 

  18. Daro E, Sheff D, Gomez M, Kreis T, Mellman I (1997) Inhibition of endosome function in CHO cells bearing a temperature-sensitive defect in the coatomer (COPI) component epsilon-COP. J Cell Biol 139:1747–1759

    Article  PubMed  Google Scholar 

  19. de Renzis S, Sonnichsen B, Zerial M (2002) Divalent Rab effectors regulate the sub-compartmental organization and sorting of early endosomes. Nat Cell Biol 4:124–133

    Article  PubMed  Google Scholar 

  20. D'Hondt K, Heese-Peck A, Riezman H (2000) Protein and lipid requirements for endocytosis. Annu Rev Genet 34:255–295

    Article  PubMed  Google Scholar 

  21. Dupre S, Urban-Grimal D, Haguenauer-Tsapis R (2004) Ubiquitin and endocytic internalization in yeast and animal cells. Biochim Biophys Acta 1695:89–111

    Article  PubMed  Google Scholar 

  22. Eggenschwiler JT, Espinoza E, Anderson KV (2001) Rab23 is an essential negative regulator of the mouse Sonic hedgehog signalling pathway. Nature 412:194–198

    Article  PubMed  Google Scholar 

  23. Emans N, Zimmermann S, Fischer R (2002) Uptake of a fluorescent marker in plant cells is sensitive to brefeldin A and wortmannin. Plant Cell 14:71–86

    Article  PubMed  Google Scholar 

  24. Evans TM, Ferguson C, Wainwright BJ, Parton RG, Wicking C (2003) Rab23, a negative regulator of hedgehog signaling, localizes to the plasma membrane and the endocytic pathway. Traffic 4:869–884

    Article  PubMed  Google Scholar 

  25. Feng Y, Press B, Wandinger-Ness A (1995) Rab 7: an important regulator of late endocytic membrane traffic. J Cell Biol 131:1435–1452

    Article  PubMed  Google Scholar 

  26. Gan Y, McGraw TE, Rodriguez-Boulan E (2002) The epithelial-specific adaptor AP1B mediates post-endocytic recycling to the basolateral membrane. Nat Cell Biol 4:605–609

    PubMed  Google Scholar 

  27. Geldner N, Friml J, Stierhof YD, Jurgens G, Palme K (2001) Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413:425–428

    Article  PubMed  Google Scholar 

  28. Geldner N, Anders N, Wolters H, Keicher J, Kornberger W, Muller P, Delbarre A, Ueda T, Nakano A, Jurgens G (2003) The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112:219–230

    Article  PubMed  Google Scholar 

  29. Gerrard SR, Bryant NJ, Stevens TH (2000) VPS21 controls entry of endocytosed and biosynthetic proteins into the yeast prevacuolar compartment. Mol Biol Cell 11:613–626

    PubMed  Google Scholar 

  30. Gorvel JP, Chavrier P, Zerial M, Gruenberg J (1991) rab5 controls early endosome fusion in vitro. Cell 64:915–925

    Article  PubMed  Google Scholar 

  31. Grebe M, Xu J, Mobius W, Ueda T, Nakano A, Geuze HJ, Rook MB, Scheres B (2003) Arabidopsis sterol endocytosis involves actin-mediated trafficking via ARA6-positive early endosomes. Curr Biol 13:1378–1387

    Article  PubMed  Google Scholar 

  32. Gruenberg J, Maxfield FR (1995) Membrane transport in the endocytic pathway. Curr Opin Cell Biol 7:552–563

    Article  PubMed  Google Scholar 

  33. Gupta GD, Brent Heath I (2002) Predicting the distribution, conservation, and functions of SNAREs and related proteins in fungi. Fungal Genet Biol 36:1–21

    Article  PubMed  Google Scholar 

  34. Hawes C, Crooks K, Coleman J, Satiat-Jeunematrie B (1995) Endocytosis in plants: fact or artefact? Plant Cell Environ 18:1245–1252

    Google Scholar 

  35. Hillmer S, Depta H, Robinson DG (1986) Confirmation of endocytosis in higher plant protoplasts using lectin-gold conjugates. Eur J Cell Biol 42:142–149

    Google Scholar 

  36. Holstein SE (2002) Clathrin and plant endocytosis. Traffic 3:614–620

    Article  PubMed  Google Scholar 

  37. Holthuis JC, Nichols BJ, Dhruvakumar S, Pelham HR (1998) Two syntaxin homologues in the TGN=endosomal system of yeast. EMBO J 17:113–126

    Article  PubMed  Google Scholar 

  38. Huebner R, Depta H, Robinson DG (1985) Endocytosis in maize root cap cells. Evidence obtained using heavy metal salt solutions. Protoplasma 129:214–222

    Article  Google Scholar 

  39. Hunziker W, Peters PJ (1998) Rab17 localizes to recycling endosomes and regulates receptor-mediated transcytosis in epithelial cells. J Biol Chem 273:15734–15741

    Article  PubMed  Google Scholar 

  40. Hurst AC, Meckel T, Tayefeh S, Thiel G, Homann U (2004) Trafficking of the plant potassium inward rectifier KAT1 in guard cell protoplasts of Vicia faba. Plant J 37:391–397

    Article  PubMed  Google Scholar 

  41. Inaba T, Nagano Y, Nagasaki T, Sasaki Y (2002) Distinct localization of two closely related Ypt3=Rab11 proteins on the trafficking pathway in higher plants. J Biol Chem 277:9183–9188

    Article  PubMed  Google Scholar 

  42. Jedd G, Mulholland J, Segev N (1997) Two new Ypt GTPases are required for exit from the yeast trans-Golgi compartment. J Cell Biol 137:563–580

    Article  PubMed  Google Scholar 

  43. Jing SQ, Spencer T, Miller K, Hopkins C, Trowbridge IS (1990) Role of the human transferrin receptor cytoplasmic domain in endocytosis: localization of a specific signal sequence for internalization. J Cell Biol 110:283–294

    Article  PubMed  Google Scholar 

  44. Katzmann DJ, Odorizzi G, Emr SD (2002) Receptor downregulation and multivesicular-body sorting. Nat Rev Mol Cell Biol 3:893–905

    Article  PubMed  Google Scholar 

  45. Kornfeld S (1992) Structure and function of the mannose 6-phosphate=insulinlike growth factor II receptors. Annu Rev Biochem 61:307–330

    Article  PubMed  Google Scholar 

  46. Lee GJ, Sohn EJ, Lee MH, Hwang I (2004) The Arabidopsis rab5 homologs rha1 and ara7 localize to the prevacuolar compartment. Plant Cell Physiol 45:1211–1220

    Article  Google Scholar 

  47. Maxfield FR, McGraw TE (2004) Endocytic recycling. Nat Rev Mol Cell Biol 5:121–132

    Article  PubMed  Google Scholar 

  48. Mazel A, Leshem Y, Tiwari BS, Levine A (2004) Induction of salt and osmotic stress tolerance by overexpression of an intracellular vesicle trafficking protein AtRab7 (AtRabG3e). Plant Physiol 134:118–128

    Article  PubMed  Google Scholar 

  49. McLauchlan H, Newell J, Morrice N, Osborne A, West M, Smythe E (1998) A novel role for Rab5-GDI in ligand sequestration into clathrin-coated pits. Curr Biol 8:34–45

    Article  PubMed  Google Scholar 

  50. Meckel T, Hurst AC, Thiel G, Homann U (2004) Endocytosis against high turgor: intact guard cells of Vicia faba constitutively endocytose fluorescently labelled plasma membrane and GFP-tagged K-channel KAT1. Plant J 39:182–193

    Article  PubMed  Google Scholar 

  51. Mukhopadhyay A, Funato K, Stahl PD (1997) Rab7 regulates transport from early to late endocytic compartments in Xenopus oocytes. J Biol Chem 272:13055–13059

    Article  PubMed  Google Scholar 

  52. Nahm MY, Kim SW, Yun D, Lee SY, Cho MJ, Bahk JD (2003) Molecular and biochemical analyses of OsRab7, a rice Rab7 homolog. Plant Cell Physiol 44:1341–1349

    Article  Google Scholar 

  53. Nielsen E, Christoforidis S, Uttenweiler-Joseph S, Miaczynska M, Dewitte F, Wilm M, Hoflack B, Zerial M (2000) Rabenosyn-5, a novel Rab5 effector, is complexed with hVPS45 and recruited to endosomes through a FYVE finger domain. J Cell Biol 151:601–612

    Article  PubMed  Google Scholar 

  54. Okita TW, Rogers JC (1996) Compartmentation of proteins in the endomembrane system of plant cells. Annu Rev Plant Physiol Plant Mol Biol 47:327–350

    Article  PubMed  Google Scholar 

  55. Olkkonen VM, Dupree P, Killisch I, Lutcke A, Zerial M, Simons K (1993) Molecular cloning and subcellular localization of three GTP-binding proteins of the rab subfamily. J Cell Sci 106:1249–1261

    PubMed  Google Scholar 

  56. Opdam FJ, Kamps G, Croes H, van Bokhoven H, Ginsel LA, Fransen JA (2000) Expression of Rab small GTPases in epithelial Caco-2 cells: Rab21 is an apically located GTP-binding protein in polarised intestinal epithelial cells. Eur J Cell Biol 79:308–316

    Article  PubMed  Google Scholar 

  57. Pereira-Leal JB, Seabra MC (2001) Evolution of the Rab family of small GTP-binding proteins. J Mol Biol 313:889–901

    Article  PubMed  Google Scholar 

  58. Pfeffer S (2003) Membrane domains in the secretory and endocytic pathways. Cell 112:507–517.

    Google Scholar 

  59. Preuss ML, Santos-Serna J, Falbel TG, Bednarek SY, Nielsen E (2004) The Arabidopsis Rab GTPase RabA4b localizes to the tips of growing root hair cells. Plant Cell 16:1589–1603

    Article  PubMed  Google Scholar 

  60. Price A, Seals D, Wickner W, Ungermann C (2000) The docking stage of yeast vacuole fusion requires the transfer of proteins from a cis-SNARE complex to a Rab=Ypt protein. J Cell Biol 148:1231–1238

    Article  PubMed  Google Scholar 

  61. Raiborg C, Rusten TE, Stenmark H (2003) Protein sorting into multivesicular endosomes. Curr Opin Cell Biol 15:446–455

    Article  PubMed  Google Scholar 

  62. Riederer MA, Soldati T, Shapiro AD, Lin J, Pfeffer SR (1994) Lysosome biogenesis requires Rab9 function and receptor recycling from endosomes to the trans-Golgi network. J Cell Biol 125:573–582

    Article  PubMed  Google Scholar 

  63. Robinson JS, Klionsky DJ, Banta LM, Emr SD (1988) Protein sorting in Saccharomyces cerevisiae: isolation of mutants defective in the delivery and processing of multiple vacuolar hydrolases. Mol Cell Biol 8:4936–4948

    PubMed  Google Scholar 

  64. Robinson MS, Bonifacino JS (2001) Adaptor-related proteins. Curr Opin Cell Biol 13:444–453

    Article  PubMed  Google Scholar 

  65. Rutherford S, Moore I (2002) The Arabidopsis Rab GTPase family: another enigma variation. Curr Opin Plant Biol 5:518–528

    Article  PubMed  Google Scholar 

  66. Saito C, Ueda T, Abe H, Wada Y, Kuroiwa T, Hisada A, Furuya M, Nakano A (2002) A complex and mobile structure forms a distinct subregion within the continuous vacuolar membrane in young cotyledons of Arabidopsis. Plant J 29:245–255

    Article  PubMed  Google Scholar 

  67. Šamaj J, Baluška F, Voigt B, Schlicht M, Volkmann D, Menzel D (2004) Endocytosis, actin cytoskeleton, and signaling. Plant Physiol 135:1150–1161

    Article  PubMed  Google Scholar 

  68. Scheele U, Holstein SE (2002) Functional evidence for the identification of an Arabidopsis clathrin light chain polypeptide. FEBS Lett 514:355–360

    Article  PubMed  Google Scholar 

  69. Singer-Kruger B, Stenmark H, Zerial M (1995) Yeast Ypt51p and mammalian Rab5: counterparts with similar function in the early endocytic pathway. J Cell Sci 108:3509–3521

    PubMed  Google Scholar 

  70. Sohn EJ, Kim ES, Zhao M, Kim H, Kim YW, Lee YJ, Hillmer S, Sohn U, Jiang L,Hwang I (2003) Rha1, an Arabidopsis Rab5 Homolog, plays a critical role in the vacuolar trafficking of soluble cargo proteins. Plant Cell 15:1057–1070

    Article  PubMed  Google Scholar 

  71. Song X, Xu W, Zhang A, Huang G, Liang X, Virbasius JV, Czech MP, Zhou GW (2001) Phox homology domains specifically bind phosphatidylinositol phosphates. Biochemistry 40:8940–8944

    Article  PubMed  Google Scholar 

  72. Sonnichsen B, De Renzis S, Nielsen E, Rietdorf J, Zerial M (2000) Distinct membrane domains on endosomes in the recycling pathway visualized by multicolor imaging of Rab4, Rab5, and Rab11. J Cell Biol 149:901–914

    Article  PubMed  Google Scholar 

  73. Stack JH, Horazdovsky B, Emr SD (1995) Receptor-mediated protein sorting to the vacuole in yeast: roles for a protein kinase, a lipid kinase and GTP-binding proteins. Annu Rev Cell Dev Biol 11:1–33

    PubMed  Google Scholar 

  74. Steinmann T, Geldner N, Grebe M, Mangold S, Jackson CL, Paris S, Galweiler L, Palme K, Jurgens G (1999) Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF. Science 286:316–318

    Article  PubMed  Google Scholar 

  75. Stenmark H, Olkkonen VM (2001) The Rab GTPase family. Genome Biol 2: REVIEWS3007

    Google Scholar 

  76. Surpin M, Raikhel N (2004) Traffic jams affect plant development and signal transduction. Nat Rev Mol Cell Biol 5:100–109

    Article  PubMed  Google Scholar 

  77. Tse YC, Mo B, Hillmer S, Zhao M, Lo SW, Robinson DG, Jiang L (2004) Identification of multivesicular bodies as prevacuolar compartments in Nicotiana tabacum BY-2 cells. Plant Cell 16:672–693

    Article  PubMed  Google Scholar 

  78. Ueda T, Yamaguchi M, Uchimiya H, Nakano A (2001) Ara6, a plant-unique novel type Rab GTPase, functions in the endocytic pathway of Arabidopsis thaliana. EMBO J 20:4730–4741

    Article  PubMed  Google Scholar 

  79. Ueda T, Uemura T, Sato MH, Nakano A (2004) Functional differentiation of endosomes in Arabidopsis cells. Plant J 40:783–789

    Article  PubMed  Google Scholar 

  80. Ullrich O, Reinsch S, Urbe S, Zerial M, Parton RG (1996) Rab11 regulates recycling through the pericentriolar recycling endosome. J Cell Biol 135:913–924

    Article  PubMed  Google Scholar 

  81. van der Sluijs P, Hull M, Webster P, Male P, Goud B, Mellman I (1992) The small GTP-binding protein rab4 controls an early sorting event on the endocytic pathway. Cell 70:729–740

    Article  PubMed  Google Scholar 

  82. Vernoud V, Horton AC, Yang Z, Nielsen E (2003) Analysis of the small GTPase gene superfamily of Arabidopsis. Plant Physiol 131:1191–1208

    Article  PubMed  Google Scholar 

  83. Vitale A, Raikhel NV (1999) What do proteins need to reach different vacuoles? Trends Plant Sci 4:149–155

    Article  PubMed  Google Scholar 

  84. Vitale G, Rybin V, Christoforidis S, Thornqvist P, McCaffrey M, Stenmark H, Zerial M (1998) Distinct Rab-binding domains mediate the interaction of Rabaptin-5 with GTP-bound Rab4 and Rab5. EMBO J 17:1941–1951

    Article  PubMed  Google Scholar 

  85. Voigt B, Timmers A, Šamaj J, Hlavacka A, Ueda T, Preuss M, Nielsen E, Mathur J, Emans N, Stenmark H, Nakano A, Baluška F, Menzel D (2005) Actin-propelled endosomes accumulate at sites of actin-driven polar growth of root hairs. Eur J Cell Biol 84:609–621

    Google Scholar 

  86. Wang X, Kumar R, Navarre J, Casanova JE, Goldenring JR (2000) Regulation of vesicle trafficking in madin-darby canine kidney cells by Rab11a and Rab25. J Biol Chem 275:29138–29146

    Article  PubMed  Google Scholar 

  87. Weigert R, Yeung AC, Li J, Donaldson JG (2004) Rab22a regulates the recycling of membrane proteins internalized independently of clathrin. Mol Biol Cell 15:3758–3770

    Article  PubMed  Google Scholar 

  88. Wettey FR, Hawkins SF, Stewart A, Luzio JP, Howard JC, Jackson AP (2002) Controlled elimination of clathrin heavy-chain expression in DT40 lymphocytes. Science 297:1521–1525

    Article  PubMed  Google Scholar 

  89. Wiederkehr A, Avaro S, Prescianotto-Baschong C, Haguenauer-Tsapis R, Riezman H (2000) The F-box protein Rcy1p is involved in endocytic membrane traffic and recycling out of an early endosome in Saccharomyces cerevisiae. J Cell Biol 149:397–410

    Article  PubMed  Google Scholar 

  90. Wilcke M, Johannes L, Galli T, Mayau V, Goud B, Salamero J (2000) Rab11 regulates the compartmentalization of early endosomes required for efficient transport from early endosomes to the trans-golgi network. J Cell Biol 151:1207–1220

    Article  PubMed  Google Scholar 

  91. Xu Y, Seet LF, Hanson B, Hong W (2001) The Phox homology (PX) domain, a new player in phosphoinositide signalling. Biochem J 360:513–530

    Article  PubMed  Google Scholar 

  92. Yamashiro DJ, Maxfield FR (1988) Regulation of endocytic processes by pH. Trends Pharmacol Sci 9:190–193

    Article  PubMed  Google Scholar 

  93. Zacchi P, Stenmark H, Parton RG, Orioli D, Lim F, Giner A, Mellman I, Zerial M, Murphy C (1998) Rab17 regulates membrane trafficking through apical recycling endosomes in polarized epithelial cells. J Cell Biol 140:1039–1053

    Article  PubMed  Google Scholar 

  94. Zerial M, McBride H (2001) Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2:107–117

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Nielsen .

Editor information

Jozef Šamaj František Baluška Diedrik Menzel

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Nielsen, E. Rab GTPases in Plant Endocytosis. In: Šamaj, J., Baluška, F., Menzel, D. (eds) Plant Endocytosis. Plant Cell Monographs, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7089_011

Download citation

Publish with us

Policies and ethics