Skip to main content

Treatment of Azo Dye-Containing Wastewater Using Integrated Processes

  • Chapter
  • First Online:
Biodegradation of Azo Dyes

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 9))

Abstract

Azo dyes are the most widely used dyes in textile industry. During the dyeing process, the degree of exhaustion of dyes is never complete, resulting in azo dye-containing effluents. The biodegradation of azo dyes is difficult due to their complex structure and synthetic nature. The removal of azo dyes from industry effluents is desirable not only for aesthetic reasons but also because azo dyes and their breakdown products are toxic to aquatic life and mutagenic to humans. In recent years, application of integrated processes for treatment of azo dye-containing wastewater has received considerable attention in the literatures. This review highlights some of the notable examples in the use of integrated processes for azo dye-containing wastewater treatment and deals with biodegradation mechanism of azo dyes. The review also summarizes and attempts to compare the advantages and disadvantages of integrated processes. It can be found that integrated treatment system seems to be an efficient and promising alternative for the treatment of azo dye-containing wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADMI:

American dye manufacturer institute

AOMBR:

Anaerobic–oxic membrane bioreactor

AOPs:

Advanced oxidation processes

AR151:

Acid Red-151

ASP:

Activated sludge process

BOD:

Biochemical oxygen demand

COD:

Chemical oxygen demand

DO:

Dissolved oxygen

EGSB:

Expanded granular sludge bed

GAC:

Granular activated carbon

HRP:

Horseradish peroxidase enzyme

HRT:

Hydraulic retention time

MF:

Microfiltration

NF:

Nanofiltration

RB5:

Reactive Black 5

RO:

Reverse osmosis

SBR:

Sequencing batch reactor

SRT:

Solids retention time

TDS:

Total dissolved solids

TiO2 :

Titan dioxide

TS:

Total solids

UASB:

Up-flow anaerobic sludge blanket

UF:

Ultrafiltration

References

  1. Stolz A (2001) Basic and applied aspects in the microbial degradation of azo dyes. Appl Microbiol Biotechnol 56:69–80

    Article  CAS  Google Scholar 

  2. Vijaykumar MH, Vaishampayan PA, Warren SH et al (2007) Decolourization of naphthalene-containing sulfonated azo dyes by Kerstersia sp strain VKY1. Enzyme Microb Technol 40:204–211

    Article  CAS  Google Scholar 

  3. Aleboyeh A, Olya MA, Aleboyeh H (2009) Oxidative treatment of azo dyes in aqueous solution by potassium permanganate. J Hazard Mater 162:1530–1535

    Article  CAS  Google Scholar 

  4. Lodha B, Chuaudhari S (2007) Optimization of Fenton-biological treatment scheme for the treatment of aqueous dye solutions. J Hazard Mater 148:459–466

    Article  CAS  Google Scholar 

  5. Zhang H, Duan L, Zhang Y et al (2005) The use of ultrasound to enhance the decolorization of the C.I. Acid Orange 7 by zero-valentiron. Dyes Pigm 65:39–43

    Article  CAS  Google Scholar 

  6. Kulla HG, Klausener F, Meyer U et al (1983) Interference of aromatic sulfo groups in the microbial degradation of the azo dyes Orange I and Orange II. Arch Microbiol 135:1–7

    Article  CAS  Google Scholar 

  7. Matthew EJ, Spalding JW, Tennant RW (1993) Transformation of BALB/c-3T3 cells via transformation responses of 168 chemicals compared with mutagenicity in salmonella and carcinogenicity in rodent bioassays. Environ Health Perspect 101:347–482

    Article  Google Scholar 

  8. Chung KT, Stevens SEJ (1993) Degradation of azo dyes by environmental microorganisms and helminthes. Environ Toxicol Chem 12:2121–2132

    CAS  Google Scholar 

  9. Weisburger JH (2002) Comments on the history and important of aromatic and heterocyclic amines in public health. Mutat Res 506–507:9–20

    Google Scholar 

  10. Hao OJ, Kim H, Chiang PC et al (2000) Decolorization of wastewater. Crit Rev Environ Sci Technol 30:449–502

    Article  CAS  Google Scholar 

  11. Maier J, Kandelbauer A, Erlacher A et al (2004) A new alkali-themostable azo reductase from Bacillus sp. strain SF. Appl Environ Microbiol 70:837–844

    Article  CAS  Google Scholar 

  12. Scott JP, Ollis DF (1995) Integration of chemical and biological oxidation processes for water treatment: review and recommendations. Environ Prog 14:88–103

    Article  CAS  Google Scholar 

  13. Scott JP, Ollis DF (1997) Integration of chemical and biological oxidation processes for water treatment: II. Recent illustrations and experiences. J Adv Oxid Technol 2:374–381

    CAS  Google Scholar 

  14. Carriere J, Mourato D, Jones D (1993) Answers to textile wastewater problems: membrane bioreactor systems. In: Proceedings of the international conference and exhibition, AATCC Book of Papers, Montreal

    Google Scholar 

  15. Cooper P (1993) Removing color from dyehouse wastewaters – a critical review of technology available. J Soc Dyers Color 109:97–100

    Article  CAS  Google Scholar 

  16. Majewska-Nowak K (1992) Color removal by reverse osmosis. J Membr Sci 68:307–315

    Article  CAS  Google Scholar 

  17. Mckay G (1980) Color removal by adsorption. Am Dyestuff Rep 69:38–45

    CAS  Google Scholar 

  18. Crini G, Badot PM (2008) Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature. Prog Polym Sci 33:399–447

    Article  CAS  Google Scholar 

  19. Sirianuntapiboon S, Sansak J (2008) Treatability studies with granular activated carbon (GAC) and sequencing batch reactor (SBR) system for textile wastewater containing direct dyes. J Hazard Mater 159:404–411

    Article  CAS  Google Scholar 

  20. Ong SA, Toorisaka E, Hirata M, Hano T (2008) Combination of adsorption and biodegradation processes for textile effluent treatment using a granular activated carbon-biofilm configured packed column system. J Environ Sci 20:952–956

    Article  CAS  Google Scholar 

  21. Bes-Piá A, Mendoza-Roca JA, Roig-Alcover L et al (2003) Comparison between nanofiltration and ozonation of biologically treated textile wastewater for its reuse in the industry. Desalination 157:81–86

    Article  Google Scholar 

  22. Fersi C, Gzara L, Dhahbi M (2005) Treatment of textile effluents by membrane technologies. Desalination 185:1825–1835

    Article  CAS  Google Scholar 

  23. You SJ, Tseng DH, Deng JY (2008) Using combined membrane processes for textile dyeing wastewater reclamation. Desalination 234:426–432

    Article  CAS  Google Scholar 

  24. Gomes AC, Goncalves IC, de Pinho MN, Porter JJ (2007) Integrated nanofiltration and upflow anaerobic sludge blanket treatment of textile wastewater for in-plant reuse. Water Environ Res 79:498–506

    Article  CAS  Google Scholar 

  25. Żyłłaa R, Sójka-Ledakowicza J, Stelmachb E et al (2006) Coupling of membrane filtration with biological methods for textile wastewater treatment. Desalination 198:316–325

    Article  CAS  Google Scholar 

  26. Katarzyna P, Anna KS, Stanisław L et al (2009) Integration of nanofiltration and biological degradation of textile wastewater containing azo dye. Chemosphere 75:250–255

    Article  CAS  Google Scholar 

  27. Lu XJ, Liu L, Yang B, Chen JH (2009) Reuse of printing and dyeing wastewater in processes assessed by pilot-scale test using combined biological process and sub-filter technology. J Clean Prod 17:111–114

    Article  Google Scholar 

  28. Lu XJ, Yang B, Chen JH et al (2009) Treatment of wastewater containing azo dye reactive brilliant red X-3B using sequential ozonation and upflow biological aerated filter process. J Hazard Mater 161:241–245

    Article  CAS  Google Scholar 

  29. El Defrawy NMH, Shaalan HF (2007) Integrated membrane solutions for green textile industries. Desalination 204:241–254

    Article  CAS  Google Scholar 

  30. Ledakowicz S, Solecka M, Zylla R (2001) Biodegradation, decolourisation and detoxification of textile wastewater enhanced by advanced oxidation processes. J Biotechnol 89:175–184

    Article  CAS  Google Scholar 

  31. Rodriguez M, Sarria V, Esplugas S et al (2002) Photo-Fenton treatment of a biorecalcitrant wastewater generated in textile activities: biodegradability of the photo-treated solution. J Photochem Photobiol A Chem 151:129–135

    Article  CAS  Google Scholar 

  32. Goi A, Trapido M (2002) Hydrogen peroxide photolysis, Fenton reagent and photo-Fenton for the degradation of nitrophenols: a comparative study. Chemosphere 46:913–922

    Article  CAS  Google Scholar 

  33. Mills G, Hoffmann MR (1993) Photocatalytic degradation of pentachlorophenol on TiO2 particles: identification of intermediates and mechanism of reaction. Environ Sci Technol 27:1681–1689

    Article  CAS  Google Scholar 

  34. Spadaro JT, Isabelle L, Renganathan V (1994) Hydroxyl radical mediated degradation of azo dyes: evidence for benzene generation. Environ Sci Technol 28(7):1389–1393

    Article  CAS  Google Scholar 

  35. Ghoreishi SM, Haghighi R (2003) Chemical catalytic reaction and biological oxidation for treatment of non-biodegradable textile effluent. Chem Eng J 95:163–169

    Article  CAS  Google Scholar 

  36. Gökçena F, Özbelge TA (2006) Pre-ozonation of aqueous azo dye (Acid Red-151) followed by activated sludge process. Chem Eng J 123:109–115

    Article  CAS  Google Scholar 

  37. Idil AA, Betul HG, Jens-Ejbye S (2008) Advanced oxidation of acid and reactive dyes: effect of Fenton treatment on aerobic, anoxic and anaerobic processes. Dyes Pigm 78:117–130

    Article  CAS  Google Scholar 

  38. Marco SL, Albino AD, Ana S et al (2007) Degradation of a textile reactive Azo dye by a combined chemical-biological process: Fenton’s reagent-yeast. Water Res 41:1103–1109

    Article  CAS  Google Scholar 

  39. Tantak NP, Chaudhari S (2006) Degradation of azo dyes by sequential Fenton’s oxidation and aerobic biological treatment. J Hazard Mater 136:698–705

    Article  CAS  Google Scholar 

  40. García-Montaño J, Torrades F, García-Hortal JA et al (2006) Degradation of Procion Red H-E7B reactive dye by coupling a photo-Fenton system with a sequencing batch reactor. J Hazard Mater B134:220–229

    Article  CAS  Google Scholar 

  41. Brosillon S, Djelal H, Merienne N et al (2008) Innovative integrated process for the treatment of azo dyes: coupling of photocatalysis and biological treatment. Desalination 222:331–339

    Article  CAS  Google Scholar 

  42. Harrelkas F, Paulo A, Alves MM et al (2008) Photocatalytic and combined anaerobic-photocatalytic treatment of textile dyes. Chemosphere 72:1816–1822

    Article  CAS  Google Scholar 

  43. Moziaa S, Morawskia AW, Toyodab M et al (2009) Application of anatase-phase TiO2 for decomposition of azo dye in a photocatalytic membrane reactor. Desalination 24:97–105

    Article  CAS  Google Scholar 

  44. Sudarjanto G, Keller-Lehmann B, Keller J (2006) Optimization of integrated chemical-biological degradation of a reactive azo dye using response surface methodology. J Hazard Mater 138:B160–B168

    Article  CAS  Google Scholar 

  45. Carvalho C, Fernandes A, Lopes A et al (2007) Electrochemical degradation applied to the metabolites of Acid Orange 7 anaerobic biotreatment. Chemosphere 67:1316–1324

    Article  CAS  Google Scholar 

  46. Kim GY, Lee KB, Cho SH et al (2005) Electroenzymatic degradation of azo dye using an immobilized peroxidase enzyme. J Hazard Mater B126:183–188

    Article  CAS  Google Scholar 

  47. Xu MY, Guo J, Sun GP (2007) Biodegradation of textile azo dye by Shewanella decoloration S12 under microaerophilic conditions. Appl Microbiol Biotechnol 76:719–726

    Article  CAS  Google Scholar 

  48. Rajaguru P, Kalaiselve K, Palanivel M et al (2000) Biodegradation of azo dyes in a sequential anaerobic-aerobic system. Appl Microbiol Biotechnol 54:268–273

    Article  CAS  Google Scholar 

  49. O’Neill C, Lopez A, Esteves S et al (2000) Azo-dye degradation in an anaerobic-aerobic treatment operating on simulated textile effluents. Appl Microbiol Biotechnol 53:249–254

    Article  Google Scholar 

  50. O’Neill C, Hawkes FR, Kawkes DW et al (2000) Anaerobic-aerobic biotreatment of simulated textile effluent containing varied ratios of starch and azo dye. Water Res 34:2355–2361

    Article  Google Scholar 

  51. O’Neill C, Hawkes FR, Kawkes DL et al (1999) Colour in textile effluents-source, measurement, discharge consents and simulation: a review. J Chem Technol Biotechnol 74:1009–1018

    Article  Google Scholar 

  52. Seshadri S, Bishop PL, Agha AM (1994) Anaerobic/aerobic treatment of selected azo dyes in wastewater. Waste Manange 14:127–137

    Article  CAS  Google Scholar 

  53. FitzGerald SW, Bishop PL (1995) Two stage anaerobic-aerobic treatment of sulfonated azo dyes. J Environ Sci Health A Tox Hazard Subst Environ Eng 30:1251–1276

    Google Scholar 

  54. Sosath F, Libra JA (1997) Purification of wastewaters containing azo dyes. Acta Hydrochim Hydrobiol 25:259–264

    Article  CAS  Google Scholar 

  55. Wiesmann U, Sosath F, Borchert M et al (2002) Attempts to the decolorization and mineralization of the azo dye C.I. Reactive Black 5. Wasser Abwasser 143:329–336

    CAS  Google Scholar 

  56. Libra JA, Borchert M, Vigelahn L et al (2004) Two stage biological treatment of a diazo reactive textile dye and the fate of the dye metabolites. Chemosphere 56:167–180

    Article  CAS  Google Scholar 

  57. An H, Qian Y, Gu XS et al (1996) Biological treatment of dye wastewaters using an anaerobic-oxic system. Chemosphere 33:2533–2542

    Article  CAS  Google Scholar 

  58. Zaoyan Y, Ke S, Guangliiiang S et al (1992) Anaerobic-aerobic treatment of a dye wastewater by combination of RBC with activated sludge. Water Sci Technol 26:2093–2096

    CAS  Google Scholar 

  59. Jiangrong Z, Yanru Y, Huren A et al (1994) A study of dye wastewater treatment using anaerobic-aerobic process. Proceedings of the seventh international symposium on anaerobic digestion, Cape Town, South Africa, pp 360–263

    Google Scholar 

  60. Basibuyuk M, Forster CF (1997) The use of sequential anaerobic-aerobic processes for the biotreatment of a simulated dyeing wastewater. Environ Technol 18:843–848

    CAS  Google Scholar 

  61. Tan NGG, Field JA (2000) Environmental technologies to treat sulfur pollution principles and engineering. IWA Publishing, London, pp 377–392

    Google Scholar 

  62. Cruz A, Buitron G (2001) Biodegradation of Disperse Blue 79 using sequenced anaerobic-aerobic biofilters. Water Sci Technol 44:159–166

    CAS  Google Scholar 

  63. Sarsour J, Janitza J et al (2001) Biological degradation of dye-containing wastewater. Wasser Luft Boden (6):44–46

    Google Scholar 

  64. Kuai L, De Vreese I, Vandevivere P et al (1998) GAC-amended USAB reactor for the stable treatment of toxic textile wastewater. Environ Technol 19:1111–1117

    Article  CAS  Google Scholar 

  65. Sponza DT, Isik M (2005) Reactor performances and fate of aromatic amines through decolorization of Direct Black 38 dye under anaerobic-aerobic sequential. Process Biochem 40:35–44

    Article  CAS  Google Scholar 

  66. IsiK M, Sponza DT (2004) Monitoring of toxicity and intermediates of C.I. Direct Black 38 azo dye through decolorization in an anaerobic-aerobic sequential reactor system. J Hazard Mater 114:29–39

    Article  CAS  Google Scholar 

  67. Sponza DT, Isik M (2002) Decolorization and azo dye degradation by anaerobic-aerobic sequential process. Enzyme Microb Technol 31:102–110

    Article  CAS  Google Scholar 

  68. Sponza DT, Isik M (2002) Decolorization and inhibition kinetic of Direct Black 38 azo dye with granulated anaerobic-aerobic sequential process. Water Sci Technol 45:271–278

    CAS  Google Scholar 

  69. IsiK M, Sponza DT (2003) Aromatic amine degradation in a USAB/CSTR sequential system treating Conge red dye. J Environ Sci Health A Tox Hazard Subst Environ Eng 38:2301–2315

    Google Scholar 

  70. IsiK M, Sponza DT (2004) Decolorization of azo dyes under batch anaerobic and sequential anaerobic-aerobic conditions. J Environ Sci Health A Tox Hazard Subst Environ Eng 39:1107–1127

    Google Scholar 

  71. IsiK M, Sponza DT (2004) Anaerobic/aerobic sequential treatment of a cotton textile mill wastewater. J Chem Technol Biotechnol 79:1268–1274

    Article  CAS  Google Scholar 

  72. Kapdan IK, Oztekin R (2003) Decolorization of textile dyestuff Reactive Orange 16 in fed-batch reactor under anaerobic condition. Enzyme Microb Technol 33:231–235

    Article  CAS  Google Scholar 

  73. Kapdan IK, Alparslan S (2005) Application of anaerobic-aerobic sequential treatment system to real textile wastewater for color and COD removal. Enzyme Microb Technol 36:273–279

    Article  CAS  Google Scholar 

  74. Ong SA, Toorisaka E, Hirata M et al (2005) Decolorization of azo dye in a sequential USAB-SBR system. Sep Purif Technol 42:297–302

    Article  CAS  Google Scholar 

  75. Frijters CTMJ, Vos RH, Scheffer G et al (2004) Decolorizing and detoxifying textile wastewater in a full-scale sequential anaerobic-aerobic system. In: Guiot SR, vol 4. IWA Publishing, London, pp 2387–2390

    Google Scholar 

  76. Minke R, Rott U (2002) Investigation to anaerobic pre-treatment of highly colorly textile industry wastewater. Wasser Abwasser 143:320–328

    CAS  Google Scholar 

  77. Lourenco ND, Novais JM, Pinheiro HM (2000) Reactive textile dye colour removal in a sequencing batch reactive. Water Sci Technol 42:321–328

    CAS  Google Scholar 

  78. Lourenco ND, Novais JM, Pinheiro HM (2001) Effect of some operational parameters on textile dye biodegradation in a sequential batch reactor. J Biotechnol 89:163–174

    Article  CAS  Google Scholar 

  79. Lourenco ND, Novais JM, Pinheiro HM (2003) Analysis of secondary metabolite fate during anaerobic-aerobic azo dye biodegradation in a sequential batch reactor. Environ Technol 24:679–686

    Article  CAS  Google Scholar 

  80. Albuquerque MGE, Lopes AT, Serralheiro ML et al (2005) Biological sulphate reduction and redox mediator effects on azo dye decolourisation in anaerobic-aeobic sequencing batch reactors. Enzyme Microb Technol 36:790–799

    Article  CAS  Google Scholar 

  81. Goncalves IC, Penha S, Matos M et al (2005) Evaluation of an integrated anaerobic-aerobic SBR system for the treatment of wool dyeing effluents. Biodegradation 16:81–89

    Article  CAS  Google Scholar 

  82. Luangdilok W, Paswad T (2000) Effect of chemical structures of reactive dyes on color removal by an anaerobic-aerobic process. Water Sci Technol 42:377–382

    CAS  Google Scholar 

  83. Panswad T, Iamsamer K, Anotai J (2001) Decolorisation of azo-reactive dye by polyphosphate and glycogen-accumulating organisms in an anaerobic-aerobic sequencing batch reactor. Bioresour Technol 76:151–159

    Article  CAS  Google Scholar 

  84. Panswad T, Iamsamer K, Anotai J (2001) Comparison of dye wastewater treatment by normal and anoxic+anaerobic-aerobic SBR activated sludge process. Water Sci Technol 43:355–362

    CAS  Google Scholar 

  85. Shaw CB, Carliell CM, Wheatley AD (2002) Anaerobic-aerobic treatment of coloured textile effluents using sequencing batch reactors. Water Res 36:1993–2001

    Article  CAS  Google Scholar 

  86. Tan NCG (2001) Integrated and sequential anaerobic-aerobic biodegradation of azo dyes. PhD Thesis, Agri-technology and Food Sciences, Sub-department of environmental technology, Wageningen University, Wageningen, The Netherlands

    Google Scholar 

  87. Kalyuzhnyi S, Sklyar V (2000) Biomineralisation of azo dyes and their breakdown products in anaerobic-aerobic hybrid and USAB reactor. Water Sci Technol 41:23–30

    CAS  Google Scholar 

  88. Harmer C, Bioshop P (1992) Transformation of azo dye AO7 by wastewater biofilms. Water Sci Technol 26:627–636

    CAS  Google Scholar 

  89. Jiang H, Bishop DT (1994) Aerobic biodegradation of azo dyes in biofilms. Water Sci Technol 29:525–530

    CAS  Google Scholar 

  90. Gottlieb A, Shaw C, Smith A et al (2003) The toxicity of textile reactive azo dyes after hydrolysis and decolourisation. J Biotechnol 101:49–56

    Article  CAS  Google Scholar 

  91. Van der Zee FP, Villaverde S (2005) Combined anaerobic-aerobic treatment of azo dyes – a short review of bioreactor studies. Water Res 39:1425–1440

    Article  CAS  Google Scholar 

  92. Brown D, Laboureur P (1993) The degradation of dyestuffs: part I primary biodegradation under anaerobic conditions. Chemosphere 12:397–404

    Article  Google Scholar 

  93. Suzuki T, Timofei S, Kurunczi L et al (2001) Correlation of aerobic biodegradability of sulfonated azo dyes with chemical structure. Chemosphere 45:1–9

    Article  CAS  Google Scholar 

  94. Jing L, Hou T (1992) Degradation of azo dyes by algae. Microbiology 57:3144–3149

    Google Scholar 

  95. Rai HS, Singh PPS, Cheema TK et al (2007) Decolorization of triphenylmethane dye-bath effluent in an integrated two-stage anaerobic reactor. J Environ Manage 83:290–297

    Article  CAS  Google Scholar 

  96. Cariell CM, Barclay SJ, Naidoo N et al (1995) Microbial decolourisation of a reactive azo dye under anaerobic conditions. Water SA 21:61–69

    Google Scholar 

  97. Grady CPL Jr, Daigger GT, Lim HC (1999) Biological wastewater treatment. Marcel Dekker, Inc., New York, NY, p 1076

    Google Scholar 

  98. Wuhrmann K, Ke R, Guangliang S et al (1980) Investigation on rate-determining factors in the microbial reduction of azo dyes. Eur J Appl Microbiol Biotechnol 9:325–338

    Article  CAS  Google Scholar 

  99. Muhammas A, Crowley ADE (2008) Decolorization of azo dyes by Shewanella sp. under saline conditions. Appl Microbiol Biotechnol 79:1053–1059

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Dr. F.P. van der Zee and S. Villaverde (Combined anaerobic–aerobic treatment of azo dyes – a short review of bioreactor studies), whose work was much helpful for us.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xujie Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lu, X., Liu, R. (2010). Treatment of Azo Dye-Containing Wastewater Using Integrated Processes. In: Atacag Erkurt, H. (eds) Biodegradation of Azo Dyes. The Handbook of Environmental Chemistry, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/698_2009_47

Download citation

Publish with us

Policies and ethics