Skip to main content

A Practical Guide to dSTORM: Super-Resolution Imaging with Standard Fluorescent Probes

  • Chapter
  • First Online:
Far-Field Optical Nanoscopy

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 14))

  • 1690 Accesses

Abstract

This chapter provides a comprehensive overview of how reliable structural information can be obtained from super-resolution imaging based on stochastic photoswitching of organic fluorophores in fixed and living cells. Since single-molecule-based super-resolution imaging relies critically on the labeling density, the reversibility of photoswitching, and exact fitting of the center of mass of the measured point spread functions (PSFs) of isolated fluorophores, the controlled photoswitching of organic fluorophores with minimal photobleaching are discussed in detail, with particular focus on how they influence structural information extractable. Furthermore, the mechanism of reversible photoswitching of organic fluorophores in aqueous solvents in the presence of thiols is described. Finally, representative applications of direct stochastic optical reconstruction microscopy (dSTORM) are provided and consequences for live-cell super-resolution imaging with organic fluorophores with high spatiotemporal resolution is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moerner WE, Orrit M (1999) Illuminating single molecules in condensed matter. Science 283:1670–1676

    Article  CAS  Google Scholar 

  2. Sauer M, Hofkens J, Enderlein J (2011) Handbook of fluorescence spectroscopy and imaging: from single molecules to ensembles: from ensemble to single molecules. Wiley, Weilheim

    Book  Google Scholar 

  3. Drexhage KH (1973) Structure and properties of laser dyes. In: Schafer FP (ed) Topics in applied physics, vol 1, Dye Lasers. Springer, Heidelberg

    Google Scholar 

  4. Tinnefeld P, Sauer M (2005) Branching out of single-molecule fluorescence spectroscopy: challenges for chemistry and influence on biology. Angew Chem Int Ed 44:2642–2671

    Article  CAS  Google Scholar 

  5. Cheezum MK, Walker WF, Guilford WH (2001) Quantitative comparison of algorithms for tracking single fluorescent particles. Biophys J 81:2378–2388

    Article  CAS  Google Scholar 

  6. Thompson RE, Larson DR, Webb WW (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82:2775–2783

    Article  CAS  Google Scholar 

  7. Yildiz A, Selvin PR (2005) Fluorescence imaging with one nanometer accuracy: application to molecular motors. Acc Chem Res 38:574–582

    Article  CAS  Google Scholar 

  8. Zondervan R, Kulzer F, Orlinskii SB, Orrit M (2003) Photoblinking of rhodamine 6 G in poly(vinyl alcohol): radical dark state formed through the triplet. J Phys Chem A 107:6770–6776

    Article  CAS  Google Scholar 

  9. Rasnik I, McKinney SA, Ha T (2006) Non-blinking and long-lasting single molecule fluorescence imaging. Nat Methods 3:891–893

    Article  CAS  Google Scholar 

  10. Widengren J, Chmyrov A, Eggeling C, Löfdahl PA, Seidel CAM (2007) Strategies to improve photostabilities in ultrasensitive fluorescence spectroscopy. J Phys Chem A 111:429–440

    Article  CAS  Google Scholar 

  11. Vogelsang J, Kasper R, Person B, Heilemann M, Sauer M, Tinnefeld P (2008) A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes. Angew Chem Int Ed 47:5465–5469

    Article  CAS  Google Scholar 

  12. Orrit M (2010) Chemical and physical aspects of charge transfer in the fluorescence intermittency of single molecules and quantum dots. Photochem Photobiol Sci 9:637–642

    Article  CAS  Google Scholar 

  13. Spielmann T, Blom H, Geissbuehler M, Lasser T, Widengren J (2010) Transient state monitoring by total internal reflection fluorescence microscopy. J Phys Chem B 114:4035–4046

    Article  CAS  Google Scholar 

  14. Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19:780–782

    Article  CAS  Google Scholar 

  15. Hell SW (2007) Far-field optical nanoscopy. Science 316:1153–1158

    Article  CAS  Google Scholar 

  16. Lidke KA, Rieger B, Jovin TM, Heintzmann R (2005) Superresolution by localization of quantum dots using blinking statistics. Optics Express 13:7052–7062

    Article  Google Scholar 

  17. Dertinger T, Colyer R, Iyer G, Weiss S, Enderlein J (2009) Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proc Natl Acad Sci USA 106:22287–22292

    Article  CAS  Google Scholar 

  18. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645

    Article  CAS  Google Scholar 

  19. Hess ST, Girirajan TP, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91:4258–4272

    Article  CAS  Google Scholar 

  20. Rust MJ, Bates B, Zhuang X (2006) Subdiffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:793–795

    Article  CAS  Google Scholar 

  21. Gould TJ, Verkhusha VV, Hess ST (2009) Imaging biological structures with fluorescence photoactivation localization microscopy. Nat Protocols 4:291–308

    Article  CAS  Google Scholar 

  22. Shroff H, White H, Betzig E (2008) Photoactivation localization microscopy (PALM) of adhesion complexes. Current Protocols Cell Biol 4:21.1–4.21.27

    Google Scholar 

  23. Ji N, Shroff H, Zhong H, Betzig E (2008) Advances in the speed and resolution of light microscopy. Current Opin Neurobiol 18:605–616

    Article  CAS  Google Scholar 

  24. Bates M, Blosser TR, Zhuang X (2005) Short-range spectroscopic ruler based on a single-molecule optical switch. Phys Rev Lett 94:108101

    Article  Google Scholar 

  25. Heilemann M, Margeat E, Kasper R, Sauer M, Tinnefeld P (2005) Carbocyanine dyes as efficient reversible single-molecule optical switch. J Am Chem Soc 127:3801–3806

    Article  CAS  Google Scholar 

  26. Heilemann M, van de Linde S, Schüttpelz M, Kasper R, Seefeldt B, Mukherjee A, Tinnefeld P, Sauer M (2008) Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Ed 47:6172–6176

    Article  CAS  Google Scholar 

  27. Fölling J, Bossi M, Bock H, Medda R, Wurm CA, Hein B, Jakobs S, Eggeling C, Hell SW (2008) Fluorescence nanoscopy by ground-state depletion and single-molecule return. Nat Methods 5:943–945

    Article  Google Scholar 

  28. Steinhauer C, Forthmann C, Vogelsang J, Tinnefeld P (2008) Superresolution microscopy on the basis of engineered dark states. J Am Chem Soc 130:16840–16841

    Article  CAS  Google Scholar 

  29. Flors C, Ravarani CN, Dryden DT (2009) Super-resolution imaging of DNA labeled with intercalating dyes. ChemPhysChem 10:2201–2204

    Article  CAS  Google Scholar 

  30. Baddeley D, Jayasinghe ID, Cremer C, Cannell MB, Soeller C (2009) Light-induced dark states of organic fluochromes enable 30 nm resolution imaging in standard media. Biophys J 96:L22–L24

    Article  CAS  Google Scholar 

  31. Hell SW (2009) Microscopy and its focal switch. Nat Methods 6:24–32

    Article  CAS  Google Scholar 

  32. Huang B, Bates M, Zhuang X (2009) Super-resolution fluorescence microscopy. Annu Rev Biochem 78:993–1016

    Article  CAS  Google Scholar 

  33. Patterson G, Davidson M, Manley S, Lippincott-Schwartz J (2010) Superresolution imaging using single-molecule localization. Annu Rev Phys Chem 61:345–367

    Article  CAS  Google Scholar 

  34. Galbraith CG, Galbraith JA (2011) Super-resolution microscopy at a glance. J Cell Sci 124:1607–16011

    Article  CAS  Google Scholar 

  35. Shaner NC, Lin MZ, McKeown MR, Steinbach PA, Hazelwood KL, Davidson MW, Tsien RY (2008) Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat Methods 5:545–551

    Article  CAS  Google Scholar 

  36. Tang J, Akerboom J, Vaziri A, Looger LL, Shank SV (2010) Near-isotropic 3D optical nanoscopy with photon-limited chromophores. Proc Natl Acad Sci USA 107:10068–10073

    Article  CAS  Google Scholar 

  37. van de Linde S, Löschberger A, Klein T, Heidbreder M, Heilemann M, Sauer M (2011) Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nat Protocols 6:991–1009

    Article  Google Scholar 

  38. Heilemann M, van de Linde S, Mukherjee A, Sauer M (2009) Super-resolution imaging with small organic fluorophores. Angew Chem Int Ed 48:6903–6908

    Article  CAS  Google Scholar 

  39. van de Linde S, Sauer M, Heilemann M (2008) Subdiffraction-resolution fluorescence imaging of proteins in the inner mitochondrial membrane with photoswitchable fluorophores. J Struct Biol 164:250–254

    Article  Google Scholar 

  40. van de Linde S, Kasper R, Heilemann M, Sauer M (2008) Photoswitching microscopy with standard fluorophores. Appl Phys B 93:725–731

    Article  Google Scholar 

  41. Heilemann M, Dedecker P, Hofkens J, Sauer M (2009) Photoswitches: key molecules for subdiffraction-resolution fluorescence imaging and molecular quantification. Laser Photonics Rev 3:180–202

    Article  CAS  Google Scholar 

  42. van de Linde S, Mukherjee A, Schüttpelz M, Wiebusch G, Steve W, Heilemann M, Sauer M (2009) Multicolor photoswitching microscopy for subdiffraction-resolution fluorescence imaging. Photochem Photobiol Sci 8:465–469

    Article  Google Scholar 

  43. Owen DM, Rentero C, Rossy J, Magenau A, Williamson D, Rodriguez M, Gaus K (2009) PALM imaging and cluster analysis of protein heterogeneity at the cell surface. J Biophotonics 3:446–454

    Article  Google Scholar 

  44. Endesfelder U, van de Linde S, Wolter S, Sauer M, Heilemann M (2010) Subdiffraction-resolution fluorescence microscopy of myosin-actin motility. ChemPhysChem 11:836–840

    Article  CAS  Google Scholar 

  45. Wombacher R, Heidbreder M, van de Linde S, Sheetz MP, Heilemann M, Cornish VW, Sauer M (2010) Live-cell super-resolution imaging with trimethoprim conjugates. Nat Methods 7:717–719

    Article  CAS  Google Scholar 

  46. Klein T, Löschberger A, Proppert S, Wolter S, van de Linde S, Sauer M (2011) Live-cell dSTORM with SNAP-tag fusion proteins. Nat Methods 8:7–9

    Article  CAS  Google Scholar 

  47. Wolter S, Schüttpelz M, Tscherepanow M, van de Linde S, Heilemann M, Sauer M (2010) Real-time computation of subdiffraction-resolution fluorescence images. J Microscopy 237:12–22

    Article  CAS  Google Scholar 

  48. Testa I, Wurm CA, Medda R, Rothermel E, von Middendorf C, Fölling J, Jakobs S, Schönle A, Hell SW, Eggeling C (2010) Multicolor fluorescence nanoscopy in fixed and living cells by exciting conventional fluorophores with a single wavelength. Biophys J 99:2686–2694

    Article  CAS  Google Scholar 

  49. Jones SA, Shim SH, He J, Zhuang X (2011) Fast, three-dimensional super-resolution imaging of live cells. Nat Methods 8:499–505

    Article  CAS  Google Scholar 

  50. Shannon CE (1949) Communication in the presence of noise. Proceedings of the Institute of Radio Engineers 37: 10–21.

    Google Scholar 

  51. Lemmer P, Gunkel M, Baddeley D, Kaufmann R, Ulrich A, Weiland Y, Reymann J, Müller P, Hausmann M, Cremer C (2008) SPDM: Light microscopy with single-molecule resolution at the nanoscale. Appl Phys B 93:1–12

    Article  CAS  Google Scholar 

  52. Vogelsang J, Cordes T, Forthmann C, Steinhauer C, Tinnefeld P (2009) Controlling the fluorescence of ordinary oxazine dyes for single-molecule switching and superresolution microscopy. Proc Natl Acad Sci USA 109:8107–8112

    Article  Google Scholar 

  53. Sharonov A, Hochstrasser RM (2006) Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proc Acad Sci USA 103:18911–18916

    Article  CAS  Google Scholar 

  54. Roeffaers MB, De Cremer G, Libeert J, Ameloot R, Dedecker P, Bons AJ, Buckins M, Martens JA, Sels BF, De Vos DE, Hofkens J (2009) Super-resolution reactivity mapping of nanostructured catalyst particles. Angew Chem Int Ed 48:9285–9289

    Article  CAS  Google Scholar 

  55. van de Linde S, Krstic I, Prisner T, Doose S, Heilemann M, Sauer M (2011) Photoinduced formation of reversible dyes radicals and their impact on super-resolution imaging. Photochem Photobiol Sci 10:499–506

    Article  Google Scholar 

  56. Dempsey GT, Bates M, Kowtoniuk WE, Liu DR, Tsien RY, Zhuang X (2009) Photoswitching mechanism of cyanine dyes. J Am Chem Soc 131:18192–18193

    Article  CAS  Google Scholar 

  57. Wardmann P (1989) Reduction potentials of one-electron couples involving free radicals in aqueous solution. J Phys Chem Ref Data 18:1637–1755

    Article  Google Scholar 

  58. Burner U, Jantschko W, Obinger C (1999) Kinetics of oxidation of aliphatic and aromatic thiols by myeloperoxidase compounds I and II. FEBS Lett 443:290–296

    Article  CAS  Google Scholar 

  59. Doose S, Neuweiler H, Sauer M (2009) Fluorescence quenching by photoinduced electron transfer: A reporter for conformational dynamics of macromolecules. ChemPhysChem 10:1389–1398

    Article  CAS  Google Scholar 

  60. Sies H (1999) Glutathione and its role in the cellular functions. Free Radical Biol Med 27:916–921

    Article  CAS  Google Scholar 

  61. van de Linde S, Wolter S, Heilemann M, Sauer M (2010) The effect of photoswitching kinetics and labeling densities on super-resolution fluorescence imaging. J Biotechnol 149:260–266

    Article  Google Scholar 

  62. Cordes T, Strackharn M, Stahl SW, Summer W, Steinhauer C, Forthmann C, Puchner EM, Vogelsang J, Gaub HE, Tinnefeld P (2010) Resolving single-molecule assembled patterns with superresolution blink-microscopy. Nano Lett 10:645–651

    Article  CAS  Google Scholar 

  63. Holden SJ, Uphoff S, Kapanidis AN (2011) DAOSTORM: an algorithm for high-density super-resolution microscopy. Nat Methods 8:279–280

    Article  CAS  Google Scholar 

  64. Wolter S, Endesfelder U, van de Linde S, Heilemann M, Sauer M (2011) Measuring localization performance of super-resolution algorithms on very active samples. Optics Lett 19:7020–7033

    Google Scholar 

  65. Giepmans BNG, Adams SR, Ellisman MH, Tsien RY (2006) The fluorescent toolbox for assessing protein location and function. Science 312:217–224

    Article  CAS  Google Scholar 

  66. Miller LW, Cornish VW (2005) Selective chemical labeling of proteins in living cells. Curr Opin Chem Biol 9:56–60

    Article  CAS  Google Scholar 

  67. Johnsson N, Johnsson K (2007) Chemical tools for biomolecular imaging. ACS Chem Biol 2:31–38

    Article  CAS  Google Scholar 

  68. Griffin BA, Adams SR, Tsien RY (1998) Specific covalent labeling of recombinant protein molecules inside live cells. Science 281:269–272

    Article  CAS  Google Scholar 

  69. Keppler A, Gendreizig S, Gronemeyer T, Pick H, Vogel H, Johnsson K (2003) A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat Biotechnol 21:86–89

    Article  CAS  Google Scholar 

  70. Keppler A, Pick H, Arrivoli C, Vogel H, Johnsson K (2004) Labeling of fusion proteins with synthetic fluorophores in live cells. Proc Natl Acad Sci USA 102:9955–9959

    Article  Google Scholar 

  71. Miller LW, Cai Y, Sheetz M, Cornish VW (2005) In vivo protein labeling with trimethoprim conjugates: a flexible chemical tag. Nat Methods 2:255–257

    Article  CAS  Google Scholar 

  72. Gallagher S, Sable JE, Sheetz M, Cornish VW (2009) An in vivo covalent TMP-tag based on proximity-induced reactivity. ACS Chem Biol 7:547–556

    Article  Google Scholar 

  73. Tokunaga M, Imamoto N, Sakata-Sogawa K (2008) Highly inclined thin illumination enables clear single-molecule imaging in cells. Nat Methods 5:159–161

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Sauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sauer, M. (2012). A Practical Guide to dSTORM: Super-Resolution Imaging with Standard Fluorescent Probes. In: Tinnefeld, P., Eggeling, C., Hell, S. (eds) Far-Field Optical Nanoscopy. Springer Series on Fluorescence, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/4243_2012_41

Download citation

Publish with us

Policies and ethics