Skip to main content

Fluorescence Lifetime of Fluorescent Proteins

  • Chapter
  • First Online:
Fluorescent Proteins I

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 11))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kummer AD, Kompa C, Niwa H, Hirano T, Kojima S, Michel-Beyerle ME (2002) Viscosity-dependent fluorescence decay of the GFP chromophore in solution due to fast internal conversion. J Phys Chem B 106:7557–7559

    Google Scholar 

  2. Lammich L, Petersen MA, Brøndsted NM, Andersen LH (2007) The gas-phase absorption spectrum of a neutral GFP model chromophore. Biophys J 92:201–207

    CAS  Google Scholar 

  3. Litvinenko KL, Webber NM, Meech SR (2003) Internal conversion in the chromophore of the green fluorescent protein: temperature dependence and isoviscosity analysis. J Phys Chem A 107:2616–2623

    CAS  Google Scholar 

  4. Kojima S, Hirano T, Niwa H, Ohashi M, Inouye S, Tsuji FI (1997) Mechanism of the redox reaction of the Aequorea green fluorescent protein (GFP). Tetrahedron Lett 38:2875–2878

    CAS  Google Scholar 

  5. Inouye S, Tsuji FI (1994) Evidence for redox forms of the Aequorea green fluorescent protein. FEBS Lett 351:211–214

    CAS  Google Scholar 

  6. Drobizhev M, Tillo S, Makarov NS, Hughes TE, Rebane A (2009) Absolute two-photon absorption spectra and two-photon brightness of orange and red fluorescent proteins. J Phys Chem 113:855–859

    CAS  Google Scholar 

  7. Nifosi R, Luo Y (2007) Predictions of novel two-photon absorption bands in fluorescent proteins. J Phys Chem B 111:14043–14050

    CAS  Google Scholar 

  8. Tillo SE, Hughes TE, Makarov NS, Rebane A, Drobizhev M (2010) A new approach to dual-color two-photon microscopy with fluorescent proteins. BMC Biotechnol 10:6

    Google Scholar 

  9. Langhojer F, Dimler F, Jung G, Brixner T (2009) Ultrafast photoconversion of the green fluorescent protein studied by accumulative femtosecond spectroscopy. Biophys J 96:2763–2770

    CAS  Google Scholar 

  10. van Thor JJ, Gensch T, Hellingwerf KJ, Johnson LN (2002) Phototransformation of green fluorescent protein with UV and visible light leads to decarboxylation of glutamate 222. Nat Struct Biol 9:37–41

    Google Scholar 

  11. Hell SW (2007) Far-field optical nanoscopy. Science 316:1153–1158

    CAS  Google Scholar 

  12. Klar TA, Jakobs S, Dyba M, Egner A, Hell SW (2000) Fluorescence microscopy with diffraction resolution limit broken by stimulated emission. Proc Natl Acad Sci USA 97:8206–8210

    CAS  Google Scholar 

  13. Widengren J, Mets Ü, Rigler R (1999) Photodynamic properties of green fluorescent proteins investigated by fluorescence correlation spectroscopy. Chem Phys 250:171–186

    CAS  Google Scholar 

  14. Jiménez-Banzo A, Nonell S, Hofkens J, Flors C (2008) Singlet oxygen photosensitization by EGFP and its chromophore HBDI. Biophys J 94:168–172

    Google Scholar 

  15. Bulina ME, Chudakov DM, Britanova OV, Yanushevich YG, Staroverov DB, Chepurnykh TV, Merzlyak EM, Shkrob MA, Lukyanov S, Lukyanov KA (2006) A genetically encoded photosensitizer. Nat Biotechnol 24:95–99

    CAS  Google Scholar 

  16. Hilborn RC (1982) Einstein coefficients, cross sections, f values, dipole moments and all that. Am J Phys 50:982–986

    CAS  Google Scholar 

  17. Kennis JTM, Larsen DS, van Stokkum IHM, Vengris M, van Thor JJ, van Grondelle R (2004) Uncovering the hidden ground state of green fluorescent protein. Proc Natl Acad Sci USA 101:17988–17993

    CAS  Google Scholar 

  18. Min W, Lu S, Chong S, Roy R, Holtom GR, Xie XS (2009) Imaging chromophores with undetectable fluorescence by stimulated emission microscopy. Nature 461:1105–1109

    CAS  Google Scholar 

  19. Pikas DJ, Kirkpatrick SM, Tewksbury E, Brott LL, Naik RR, Stone MO, Dennis WM (2002) Nonlinear saturation and lasing characteristics of green fluorescent protein. J Phys Chem B 106:4831–4837

    CAS  Google Scholar 

  20. Jung G, Ma Y, Prall BS, Fleming GR (2005) Ultrafast fluorescence depolarisation in the yellow fluorescent protein due to its dimerisation. Chem Phys Chem 6:1628–1632

    CAS  Google Scholar 

  21. Jung G, Wiehler J, Andreas Z (2005) The photophysics of green fluorescent protein: influence of the key amino acids at positions 65, 203, and 222. Biophys J 88:1932–1947

    CAS  Google Scholar 

  22. Heikal AA, Hess ST, Webb WW (2001) Multiphoton molecular spectroscopy and excited-state dynamics of enhanced green fluorescent protein (EGFP): acid-base specifity. Chem Phys 274:37–55

    CAS  Google Scholar 

  23. Strickler SJ, Berg RA (1962) Relationship between absorption intensity and fluorescence lifetime of molecules. J Chem Phys 37:814–822

    CAS  Google Scholar 

  24. Suhling K, Siegel J, Phillips D, French PMW, Lévêque-Fort S, Webb SED, Davis DM (2002) Imaging the environment of green fluorescent protein. Biophys J 83:3589–3595

    CAS  Google Scholar 

  25. Tregidgo C, Levitt JA, Suhling K (2008) Effect of refractive index on the fluorescence lifetime of green fluorescent protein. J Biomed Opt 13:031218

    Google Scholar 

  26. Van Manen H, Verkuijlen P, Wittendorp P, Subramaniam V, van den Berg TK, Roos D, Otto C (2008) Refractive index sensing of green fluorescent proteins in living cells using fluorescence lifetime imaging microscopy. Biophys J 94:L67–L69

    Google Scholar 

  27. Beuthan J, Minet O, Helfmann J, Herrig M, Müller G (1996) The spatial variation of the refractive index in biological cells. Phys Med Biol 41:369–382

    CAS  Google Scholar 

  28. Curl CL, Bellair CJ, Harris T, Allman BE, Harris PJ, Stewart AG, Roberts A, Nugent KA, Delbridge LMD (2005) Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy. Cytometry A 65:88–92

    Google Scholar 

  29. Yamauchi T, Iwai H, Miwa M, Yamashita Y (2008) Low-coherent quantitative phase microscope for nanometer-scale measurement of living cells morphology. Opt Express 16:12227–12238

    Google Scholar 

  30. Fu Y, Zhang J, Lakowicz JR (2008) Metal-enhanced fluorescence of single green fluorescent protein (GFP). Biochem Biophys Res Commun 376:712–717

    CAS  Google Scholar 

  31. Ormö M, Cubitt AB, Kallio K, Gross LA, Tsien RY, Remington SJ (1996) Crystal structure of the Aequorea victoria green fluorescent protein. Science 273:1392–1395

    Google Scholar 

  32. Englman R, Jortner J (1970) The energy gap law for radiationless transitions in large molecules. Mol Phys 18:145–164

    CAS  Google Scholar 

  33. Freed KF (1978) Radiationless transitions in molecules. Acc Chem Res 11:74–80

    CAS  Google Scholar 

  34. Henry BR, Siebrand W (1974) Radiationless transitions. In: Birks J (ed) Organic molecular photophysics, vol 1. Wiley, London

    Google Scholar 

  35. Bae JH, Rubini M, Jung G, Wiegand G, Seifert MHJ, Azim MK, Kim J, Zumbusch A, Holak TA, Moroder L, Huber R, Budisa N (2003) Expansion of the genetic code enables design of a novel “gold” class of green fluorescent proteins. J Mol Biol 328:1071–1081

    CAS  Google Scholar 

  36. Kummer AD, Kompa C, Lossau H, Pöllinger-Dammer F, Michel-Beyerle ME, Silva CM, Bylina EJ, Coleman WJ, Yang MM, Youvan DC (1998) Dramatic reduction in fluorescence quantum yield in mutants of green fluorescent protein due to fast internal conversion. Chem Phys 237:183–193

    CAS  Google Scholar 

  37. Martin ME, Negri F, Olivucci M (2004) Origin, nature, and fate of the fluorescent state of the green fluorescent protein chromophore at the CASPT2//CASSCF resolution. J Am Chem Soc 126:5452–5464

    CAS  Google Scholar 

  38. Maddalo S, Zimmer M (2006) The role of the protein matrix in green fluorescent protein fluorescence. Photochem Photobiol 82:367–372

    CAS  Google Scholar 

  39. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, Berlin

    Google Scholar 

  40. Hötzer B, Ivanov R, Brumbarova T, Altmeier S, Kappl R, Bauer P, Jung G (2010) Determination of copper(II) ion concentration by lifetime measurements of green fluorescent protein. unpublished results

    Google Scholar 

  41. Borst JW, Hink MA, van Hoek A, Visser AJWG (2005) Effects of refractive index and viscosity on fluorescence and anisotropy decays of enhanced cyan and yellow fluorescent proteins. J Fluoresc 15:153–160

    CAS  Google Scholar 

  42. Becker W (2005) Advanced time-correlated single photon counting technique. Springer series in chemical physics, vol 81. Springer, Heidelberg

    Google Scholar 

  43. Gadella TWJ (ed) (2009) FRET and FLIM techniques. Elsevier Science & Technology, Amsterdam

    Google Scholar 

  44. Gerritsen HC, Asselbergs MAH, Agronskaia AV, Van Sark WGJHM (2002) Fluorescence lifetime imaging in scanning microscopes: acquisition speed, photon economy and lifetime resolution. J Microsc 206:218–224

    CAS  Google Scholar 

  45. Suhling K, French PMW, Phillip D (2005) Time-resolved fluorescence microscopy. Photochem Photobiol Sci 4:13–22

    CAS  Google Scholar 

  46. Yasuda R (2006) Imaging spatiotemporal dynamics of neuronal signalling using fluorescence resonance energy transfer and fluorescence lifetime imaging microscopy. Curr Opin Neurobiol 16:551–561

    CAS  Google Scholar 

  47. Pepperkok R, Squire A, Geley S, Bastiaens PIH (1999) Simultaneous detection of multiple green fluorescent proteins in live cells by fluorescence lifetime imaging microscopy. Curr Biol 9:269–272

    CAS  Google Scholar 

  48. Kremers G, Goedhart J, van Munster EB, Gadella TWJ Jr (2006) Cyan and yellow super fluorescent proteins with improved brightness, protein folding, and FRET Förster radius. Biochemistry 45:6570–6580

    CAS  Google Scholar 

  49. Kremers G, Goedhart J, van den Heuvel DJ, Gerritsen HC, Gadella TWJ Jr (2007) Improved green and blue fluorescent proteins for expression in bacteria and mammalian cells. Biochemistry 46:3775–3783

    CAS  Google Scholar 

  50. Hess ST, Sheets ED, Wagenknecht-Wiesner A, Heikal AA (2003) Quantitative analysis of the fluorescence properties of intrinsically fluorescent proteins in living cells. Biophys J 85:2566–2580

    CAS  Google Scholar 

  51. Mauring K, Deich J, Rosell FI, McAnaney TB, Moerner WE, Boxer SG (2005) Enhancement of the fluorescence of the blue fluorescent proteins by high pressure or low temperature. J Phys Chem B 109:12976–12981

    CAS  Google Scholar 

  52. Jung G, Zumbusch A (2006) Improving autofluorescent proteins: comparative studies of the effective brightness of Green Fluorescent Protein (GFP) mutants. Microsc Res Tech 69:175–185

    CAS  Google Scholar 

  53. Bowen B, Woodbury N (2003) Single-molecule fluorescence lifetime and anisotropy measurements of the red fluorescent protein, DsRed, in solution. Photochem Photobiol 77:362–369

    CAS  Google Scholar 

  54. Düser M, Zarrabi N, Bi Y, Zimmermann B, Dunn S, Börsch M (2006) 3D-localization of the a-subunit of FoF1-ATP synthase by time resolved single-molecule FRET. Proc SPIE 6092:60920

    Google Scholar 

  55. Hoffmann B, Zimmer T, Klöcker N, Kelbauskas L, König K, Benndorf K, Biskup C (2008) Prolonged irradiation of enhanced cyan fluorescent protein or Cerulean can invalidate Förster resonance energy transfer measurements. J Biomed Opt 13:031205

    Google Scholar 

  56. Jung G, Werner M, Schneider M (2008) Efficient photoconversion distorts the fluorescence lifetime of GFP in confocal microscopy: a model kinetic study on mutant Thr203Val. ChemPhysChem 9:1867–1874

    CAS  Google Scholar 

  57. Tramier M, Zahid M, Mevel J, Masse M, Coppey-Moisan M (2006) Sensitivity of CFP/YFP and GFP/mCherry pairs to donor photobleaching on FRET determination by fluorescence lifetime imaging microscopy in living cells. Microsc Res Tech 69:933–939

    CAS  Google Scholar 

  58. Lelimousin M, Noirclerc-Savoye M, Lazareno-Saez C, Paetzold B, Le Vot S, Chazal R, Macheboeuf P, Field MJ, Bourgeois D, Royant A (2009) Intrinsic dynamics in ECFP and Cerulean control fluorescence quantum yield. Biochemistry 48:10038–10046

    CAS  Google Scholar 

  59. Villoing A, Ridhoir M, Cinquin B, Erard M, Alvarez L, Vallverdu G, Pernot P, Grailhe R, Fe M, Pasquier H (2008) Complex fluorescence of the cyan fluorescent protein: comparisons with the H148D variant and consequences for quantitative cell imaging. Biochemistry 47:12483–12492

    CAS  Google Scholar 

  60. Scruggs AW, Flores CL, Wachter R, Woodbury NW (2005) Development and characterization of green fluorescent protein mutants with altered lifetimes. Biochemistry 44:13377–13384

    CAS  Google Scholar 

  61. Goedhart J, van Weeren L, Hink MA, Vischer NOE, Jalink K, Gadella TWJ Jr (2010) Bright cyan fluorescent protein variants identified by fluorescence lifetime screening. Nat Methods 7:137–139

    CAS  Google Scholar 

  62. Rizzo MA, Springer GH, Granada B, Piston DW (2004) An improved cyan fluorescent protein variant useful for FRET. Nat Biotechnol 22:445–449

    CAS  Google Scholar 

  63. Heim R, Tsien RY (1996) Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr Biol 6:178–182

    CAS  Google Scholar 

  64. Wachter RM, King BA, Heim R, Kallio K, Tsien RY, Boxer SG, Remington SJ (1997) Crystal structure and photodynamic behavior of the blue emission variant Y66H/Y145F of green fluorescent protein. Biochemistry 36:9759–9765

    CAS  Google Scholar 

  65. Malo GD, Pouwels LJ, Wang M, Weichsel A, Montfort WR, Rizzo MA, Piston DW, Wachter RM (2007) X-ray structure of Cerulean GFP: a tryptophan-based chromophore useful for fluorescence lifetime imaging. Biochemistry 46:9865–9873

    CAS  Google Scholar 

  66. Mena MA, Treynor TP, Mayo SL, Daugherty PS (2006) Blue fluorescent proteins with enhanced brightness and photostability from a structurally targeted library. Nat Biotechnol 24:1569–1571

    CAS  Google Scholar 

  67. Kummer AD, Wiehler J, Schüttrigkeit TA, Berger BW, Steipe B, Michel-Beyerle ME (2002) Picosecond time-resolved fluorescence from blue-emitting chromophore variants Y66F and Y66H of the green fluorescent protein. Chem Bio Chem 3:659–663

    CAS  Google Scholar 

  68. Lossau HS, Kummer A, Heinecke R, Pöllinger-Dammer F, Kompa C, Beiser G, Johnsson T, Silva CM, Yang MM, Youvan DC, Michel-Beyerle ME (1996) Time-resolved spectroscopy of wild-type and mutant green fluorescent proteins reveals excited state deprotonation consistent with fluorophore-protein interactions. Chem Phys 213:1–16

    CAS  Google Scholar 

  69. Megley CM, Dickson LA, Maddalo SL, Chandler GJ, Zimmer M (2009) Photophysics and dihedral freedom of the chromophore in yellow, blue, and green fluorescent protein. J Phys Chem B 113:302–308

    CAS  Google Scholar 

  70. Barondeau DP, Kassmann CJ, Tainer JA, Getzoff ED (2002) Structural chemistry of a green fluorescent protein Zn biosensor. J Am Chem Soc 124:3522–3524

    CAS  Google Scholar 

  71. Ai HW, Shaner NC, Cheng Z, Tsien RY, Campbell R (2007) Exploration of new chromophore structures leads to the identification of improved blue fluorescent proteins. Biochemistry 46:5904–5910

    CAS  Google Scholar 

  72. Tramier M, Gautier I, Piolot T, Ravalet S, Kemnitz K, Coppey J, Durieux C, Mignotte V, Coppey-Moisan M (2002) Picosecond-hetero-FRET microscopy to probe protein-protein interactions in live cells. Biophys J 83:3570–3577

    CAS  Google Scholar 

  73. Demachy I, Ridard J, Laguitton-Pasquier H, Durnerin E, Vallverdu G, Archirel P, Lévy B (2005) Cyan fluorescent protein: molecular dynamics, simulations, and electronic absorption spectrum. J Phys Chem B 109:24121–24133

    CAS  Google Scholar 

  74. Chattoraj M, King BA, Bublitz GA, Boxer SG (1996) Ultra-fast excited state dynamics in green fluorescent protein: multiple states and proton transfer. Proc Natl Acad Sci USA 93:862–8367

    Google Scholar 

  75. Olson S, McKenzie RH (2010) A dark excited state of fluorescent chromophores, considered as Brooker dyes. Chem Phys Lett 492:150–156

    Google Scholar 

  76. Pal PP, Bae JH, Azim MK, Hess P, Friedrich R, Huber R, Moroder L, Budisa N (2005) Structural and spectral response of Aequorea victoria green fluorescent proteins to chromophore fluorination. Biochemistry 44:3663–3672

    CAS  Google Scholar 

  77. Wiehler J, Jung G, Seebacher C, Zumbusch A, Steipe B (2003) Mutagenic stabilization of the photocycle intermediate of green fluorescent protein (GFP). ChemBioChem 4:1164–1171

    CAS  Google Scholar 

  78. Cotlet M, Hofkens J, Maus M, Gensch T, Van der Auweraer M, Michiels J, Dirix G, Van Guyse M, Vanderleyden J, Visser AJWG, De Schryver FC (2001) Excited-state dynamics in the enhanced green fluorescent protein mutant probed by picosecond time-resolved single photon counting spectroscopy. J Phys Chem B 105:4999–5006

    CAS  Google Scholar 

  79. Striker G, Subramaniam V, Seidel CAM, Volkmer A (1999) Photochromicity and fluorescence lifetimes of green fluorescent protein. J Phys Chem B 103:8612–8617

    CAS  Google Scholar 

  80. Stavrov SS, Solntsev KM, Tolbert LM, Huppert D (2006) Probing the decay coordinate of the green fluorescent protein: arrest of cis-trans isomerization by the protein significantly narrows the fluorescence spectra. J Am Chem Soc 128:1540–1546

    CAS  Google Scholar 

  81. Bagchi B, Fleming GR, Oxtoby DW (1983) Theory of electronic relaxation in solution in the absence of an activation barrier. J Chem Phys 78:7375–7385

    CAS  Google Scholar 

  82. Kummer AD, Wiehler J, Rehaber H, Kompa C, Steipe B, Michel-Beyerle ME (2000) Effects of threonine 203 replacements on excited-state dynamics and fluorescence properties of the green fluorescent protein (GFP). J Phys Chem B 104:4791–4798

    CAS  Google Scholar 

  83. Schwille P, Kummer S, Heikal AA, Moerner WE, Webb Watt W (2000) Fluorescence correlation spectroscopy reveals fast optical excitation-driven intramolecular dynamics of yellow fluorescent proteins. Proc Natl Acad Sci USA 97:151–156

    CAS  Google Scholar 

  84. Weber W, Helms V, McCammon JA, Langhoff PW (1999) Shedding light on the dark and weakly fluorescent states of green fluorescent proteins. Proc Natl Acad Sci USA 96:6177–6182

    CAS  Google Scholar 

  85. Baffour-Awuah NYA, Zimmer M (2004) Hula-twisting in green fluorescent protein. Chem Phys 303:7–11

    CAS  Google Scholar 

  86. Andresen M, Wahl MC, Stiel AC, Gräter F, Schäfer LV, Trowitzsch S, Weber G, Eggeling C, Grubmüller H, Hell SW, Jakobs S (2005) Structure and mechanism of the reversible photoswitch of a fluorescent protein. Proc Natl Acad Sci USA 102:13070–13074

    CAS  Google Scholar 

  87. Nifosi R, Tozzini V (2006) Cis-trans photoisomerization of the chromophore in the green fluorescent protein variant E2GFP: a molecular dynamics study. Chem Phys 323:358–368

    CAS  Google Scholar 

  88. Mizuno H, Mal TK, Wälchi M, Kikuchi A, Fukano T, Ando R, Jeyakanthan TJ, Shiro Y, Ikura M, Miyawaki A (2008) Light-dependent regulation of structural flexibility in a photochromic fluorescent protein. Proc Natl Acad Sci USA 105:9227–9232

    CAS  Google Scholar 

  89. Schleifenbaum F, Blum C, Elgass K, Subramaniam V, Meixner AJ (2008) New insights into the photophysics of DsRed by multiparameter spectroscopy on single proteins. J Phys Chem B 112:7669–7674

    CAS  Google Scholar 

  90. Bateman RJ, Chance RR, Hornig JF (1974) Fluorescence reabsorption in anthracene single crystals: lifetime variations with emission wavelength and temperature. Chem Phys 4:402–408

    Google Scholar 

  91. Chudakov DM, Matz MV, Lukyanov S, Lukyanov KA (2010) Fluorescent proteins and their applications in imaging living cells and tissues. Physiol Rev 90:1103–1163

    CAS  Google Scholar 

  92. Müller-Taubenberger A, Anderson KI (2007) Recent advances using green and red fluorescent protein variants. Appl Microbiol Biotechnol 77:1–12

    Google Scholar 

  93. Heikal AA, Hess ST, Baird GS, Tsien RY, Webb WW (2000) Molecular spectroscopy and dynamics of intrinsically fluorescent proteins: coral red (dsRed) and yellow (Citrine). Proc Natl Acad Sci USA 97:11996–12001

    CAS  Google Scholar 

  94. Schüttrigkeit TA, Zachariae U, von Feilitzsch T, Wiehler J, von Hummel J, Steipe B, Michel-Beyerle ME (2001) Picosecond time-resolved FRET in the fluorescent protein from Discosoma Red (wt-DsRed). ChemPhysChem 2:325–328

    Google Scholar 

  95. Nienhaus GU, Wiedenmann J (2009) Structure, dynamics and optical properties of fluorescent proteins: perspectives for marker development. Chem Phys Chem 2009:1369–1379

    Google Scholar 

  96. Schmid JA, Neumeier H (2005) Evolutions in science triggered by green fluorescent protein (GFP). Chem Bio Chem 6:1149–1156

    CAS  Google Scholar 

  97. Seefeldt B, Kasper R, Seidel T, Tinnefeld P, Dietz K, Heilemann M, Sauer M (2008) Fluorescent proteins for single-molecule fluorescence applications. J Biophoton 1:74–82

    CAS  Google Scholar 

  98. Shaner N, Campbell RE, Steinbach PA, Giepmans BNG, Palmer AE, Tsien RY (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22:1567–1572

    CAS  Google Scholar 

  99. Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2:905–909

    CAS  Google Scholar 

  100. Cox G, Matz M, Salih A (2007) Fluorescence lifetime imaging of coral fluorescent proteins. Microsc Res Tech 70:243–251

    CAS  Google Scholar 

  101. Hasegawa J, Ise T, Fujimoto KJ, Kikuchi A, Fukumura E, Miyawaki A, Shiro Y (2010) Excited states of fluorescent proteins, mKO and DsRed: chromophore-protein electrostatic interaction behind the color variations. J Phys Chem B 114:2971–2979

    CAS  Google Scholar 

  102. Yan W, Zhang L, Xie D, Zeng J (2007) Electronic excitations of green fluorescent proteins: modeling solvatochromatic shifts of red fluorescent protein chromophore model compound in aqueous solutions. J Phys Chem B 111:14055–14063

    CAS  Google Scholar 

  103. Liu RSH, Yang L, Liu J (2007) Mechanisms of photoisomerization of polyenes in confined media: from organic glasses to protein binding cavities. Photochem Photobiol 83:2–10

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the German Science Foundation (DFG JU650/2-2). We are indebted to Nediljko Budisa for the generous gift of proteins with unnatural amino acids. We also thank Dagmar Auerbach for careful proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregor Jung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jung, G., Brockhinke, A., Gensch, T., Hötzer, B., Schwedler, S., Veettil, S.K. (2011). Fluorescence Lifetime of Fluorescent Proteins. In: Jung, G. (eds) Fluorescent Proteins I. Springer Series on Fluorescence, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/4243_2011_14

Download citation

Publish with us

Policies and ethics