Skip to main content

Histone Acetylation-Mediated Chromatin Compaction During Mouse Spermatogenesis

  • Conference paper
The Histone Code and Beyond

Part of the book series: Ernst Schering Research Foundation Workshop ((SCHERING FOUND,volume 57))

Abstract

One of the most dramatic chromatin remodelling events takes place during mammalian spermatogenesis involving massive incorporation of somatic and testis-specific histone variants, as well as generalized histone modifications before their replacement by new DNA packaging proteins. Our data suggest that the induced histone acetylation occurring after meiosis may direct the first steps of genome compaction. Indeed, a double bromodomain-containing protein expressed in postmeiotic cells, Brdt, shows the extraordinary capacity to specifically condense acetylated chromatin in vivo and in vitro. In elongating spermatids, Brdt widely co-localizes with acetylated histones before accumulating in condensed chromatin domains. These domains preferentially maintain their acetylation status until late spermatogenesis. Based on these data, we propose that Brdt mediates a general histone acetylation-induced chromatin compaction and also maintains differential acetylation of specific regions, and is therefore involved in organizing the spermatozoon’s genome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ammer H, Henschen A, Lee CH (1986) Isolation and amino-acid sequence analysis of human sperm protamines P1 and P2. Occurrence of two forms of protamine P2. Biol Chem Hoppe Seyler 367:515–522

    PubMed  CAS  Google Scholar 

  • Balhorn R, Corzett M, Mazrimas J, Stanker LH, Wyrobek A (1987) High-performance liquid chromatographic separation and partial characterization of human protamines 1, 2, and 3. Biotechnol Appl Biochem 9:82–88

    PubMed  CAS  Google Scholar 

  • Dey A, Chitsaz F, Abbasi A, Misteli T, Ozato K (2003) The double bromodomain protein Brd4 binds to acetylated chromatin during interphase and mitosis. Proc Natl Acad Sci U S A 100:8758–8763

    Article  PubMed  CAS  Google Scholar 

  • Faure AK, Pivot-Pajot C, Kerjean A, Hazzouri M, Pelletier R, Peoc’h M, Sele B, Khochbin S, Rousseaux S (2003) Misregulation of histone acetylation in Sertoli cell-only syndrome and testicular cancer. Mol Hum Reprod 9:757–763

    Article  PubMed  CAS  Google Scholar 

  • Florence B, Faller DV (2001) You bet-cha: a novel family of transcriptional regulators. Front Biosci 6:D1008–D1018

    PubMed  CAS  Google Scholar 

  • French CA, Miyoshi I, Kubonishi I, Grier HE, Perez-Atayde AR, Fletcher JA (2003) BRD4-NUT fusion oncogene: a novel mechanism in aggressive carcinoma. Cancer Res 63:304–307

    PubMed  CAS  Google Scholar 

  • Gatewood JM, Cook GR, Balhorn R, Bradbury EM, Schmid CW (1987) Sequence-specific packaging of DNA in human sperm chromatin. Science 236:962–964

    PubMed  CAS  Google Scholar 

  • Gorka C, Brocard MP, Curtet S, Khochbin S (1998) Differential recognition of histone H10 by monoclonal antibodies during cell differentiation and the arrest of cell proliferation. J Biol Chem 273:1208–1215

    Article  PubMed  CAS  Google Scholar 

  • Govin J, Caron C, Lestrat C, Rousseaux S, Khochbin S (2004) The role of histones in chromatin remodelling during mammalian spermiogenesis. Eur J Biochem 271:3459–3469

    Article  PubMed  CAS  Google Scholar 

  • Greenwald RJ, Tumang JR, Sinha A, Currier N, Cardiff RD, Rothstein TL, Faller DV, Denis GV (2004) E mu-BRD2 transgenic mice develop B-cell lymphoma and leukemia. Blood 103:1475–1484

    Article  PubMed  CAS  Google Scholar 

  • Gusse M, Chevaillier P (1980) Electron microscope evidence for the presence of globular structures in different sperm chromatins. J Cell Biol 87:280–284

    Article  PubMed  CAS  Google Scholar 

  • Gusse M, Sautiere P, Belaiche D, Martinage A, Roux C, Dadoune JP, Chevaillier P (1986) Purification and characterization of nuclear basic proteins of human sperm. Biochim Biophys Acta 884:124–134

    PubMed  CAS  Google Scholar 

  • Hazzouri M, Pivot-Pajot C, Faure AK, Usson Y, Pelletier R, Sele B, Khochbin S, Rousseaux S (2000) Regulated hyperacetylation of core histones during mouse spermatogenesis: involvement of histone deacetylases. Eur J Cell Biol 79:950–960

    Article  PubMed  CAS  Google Scholar 

  • Jones MH, Numata M, Shimane M (1997) Identification and characterization of BRDT: a testis-specific gene related to the bromodomain genes RING3 and Drosophila fsh. Genomics 45:529–534

    Article  PubMed  CAS  Google Scholar 

  • Kanno T, Kanno Y, Siegel RM, Jang MK, Lenardo MJ, Ozato K (2004) Selective recognition of acetylated histones by bromodomain proteins visualized in living cells. Mol Cell 13:33–43

    Article  PubMed  CAS  Google Scholar 

  • Kennedy BP, Davies PL (1980) Acid-soluble nuclear proteins of the testis during spermatogenesis in the winter flounder. Loss of the high mobility group proteins. J Biol Chem 255:2533–2539

    PubMed  CAS  Google Scholar 

  • Kennedy BP, Davies PL (1981) Phosphorylation of a group of high molecular weight basic nuclear proteins during spermatogenesis in the winter flounder. J Biol Chem 256:9254–9259

    PubMed  CAS  Google Scholar 

  • Khochbin S (2001) Histone H1 diversity: bridging regulatory signals to linker histone function. Gene 271:1–12

    Article  PubMed  CAS  Google Scholar 

  • Komatsu Y, Yukutake Y, Yoshida M (2003) Four different clones of mouse antiacetyllysine monoclonal antibodies having different recognition properties share a common immunoglobulin framework structure. J Immunol Methods 272:161–175

    Article  PubMed  CAS  Google Scholar 

  • Kruhlak MJ, Hendzel MJ, Fischle W, Bertos NR, Hameed S, Yang XJ, Verdin E, Bazett-Jones DP (2001) Regulation of global acetylation in mitosis through loss of histone acetyltransferases and deacetylases from chromatin. J Biol Chem 276:38307–38319

    PubMed  CAS  Google Scholar 

  • Ladurner AG, Inouye C, Jain R, Tjian R (2003) Bromodomains mediate an acetyl-histone encoded antisilencing function at heterochromatin boundaries. Mol Cell 11:365–376

    Article  PubMed  CAS  Google Scholar 

  • Lewis JD, Abbott DW, Ausio J (2003) A haploid affair: core histone transitions during spermatogenesis. Biochem Cell Biol 81:131–140

    Article  PubMed  CAS  Google Scholar 

  • Meistrich ML, Mohapatra B, Shirley CR, Zhao M (2003) Roles of transition nuclear proteins in spermiogenesis. Chromosoma 111:483–488

    PubMed  Google Scholar 

  • Misteli T, Gunjan A, Hock R, Bustin M, Brown DT (2000) Dynamic binding of histone H1 to chromatin in living cells. Nature 408:877–881

    Article  PubMed  CAS  Google Scholar 

  • Oliva R, Bazett-Jones D, Mezquita C, Dixon GH (1987) Factors affecting nucleosome disassembly by protamines in vitro. Histone hyperacetylation and chromatin structure, time dependence, and the size of the sperm nuclear proteins. J Biol Chem 262:17016–17025

    PubMed  CAS  Google Scholar 

  • Oliva R, Mezquita C (1986) Marked differences in the ability of distinct protamines to disassemble nucleosomal core particles in vitro. Biochemistry 25:6508–6511

    Article  PubMed  CAS  Google Scholar 

  • Perry CA, Annunziato AT (1989) Influence of histone acetylation on the solubility, H1 content and DNase I sensitivity of newly assembled chromatin. Nucleic Acids Res 17:4275–4291

    PubMed  CAS  Google Scholar 

  • Pivot-Pajot C, Caron C, Govin J, Vion A, Rousseaux S, Khochbin S (2003) Acetylation-dependent chromatin reorganization by BRDT, a testis-specific bromodomain-containing protein. Mol Cell Biol 23:5354–5365

    Article  PubMed  CAS  Google Scholar 

  • Roth SY, Allis CD (1992) Chromatin condensation: does histone H1 dephosphorylation play a role? Trends Biochem Sci 17:93–98

    Article  PubMed  CAS  Google Scholar 

  • Scanlan MJ, Altorki NK, Gure AO, Williamson B, Jungbluth A, Chen YT, Old LJ (2000) Expression of cancer-testis antigens in lung cancer: definition of bromodomain testis-specific gene (BRDT) as a new CT gene, CT9. Cancer Lett 150:155–164

    Article  PubMed  CAS  Google Scholar 

  • Shang E, Salazar G, Crowley TE, Wang X, Lopez RA, Wolgemuth DJ (2004) Identification of unique, differentiation stage-specific patterns of expression of the bromodomain-containing genes Brd2, Brd3, Brd4, Brdt in the mouse testis. Gene Expr Patterns 4:513–519

    Article  PubMed  CAS  Google Scholar 

  • Shirley CR, Hayashi S, Mounsey S, Yanagimachi R, Meistrich ML (2004) Abnormalities and reduced reproductive potential of sperm from Tnp1-and Tnp2-null double mutant mice. Biol Reprod 71:1220–1229

    Article  PubMed  CAS  Google Scholar 

  • Sobhon P, Chutatape C, Chalermisarachai P, Vongpayabal P, Tanphaichitr N (1982a) Transmission and scanning electron microscopic studies of the human sperm chromatin decondensed by micrococcal nuclease and salt. J Exp Zool 221:61–79

    Article  PubMed  CAS  Google Scholar 

  • Sobhon P, Tanphaichitr N, Chutatape C, Vongpayabal P, Panuwatsuk W (1982b) Electron microscopic and biochemical analyses of the organization of human sperm chromatin decondensed with sarkosyl and dithiothreitol. J Exp Zool 223:277–290

    Article  PubMed  CAS  Google Scholar 

  • Tanphaichitr N, Sobhon P, Taluppeth N, Chalermisarachai P (1978) Basic nuclear proteins in testicular cells and ejaculated spermatozoa in man. Exp Cell Res 117:347–356

    Article  PubMed  CAS  Google Scholar 

  • Wagner TE, Yun JS (1981) Human sperm chromatin has a nucleosomal structure. Arch Androl 7:251–257

    PubMed  CAS  Google Scholar 

  • Wykes SM, Krawetz SA (2003) The structural organization of sperm chromatin. J Biol Chem 278:29471–29477

    Article  PubMed  CAS  Google Scholar 

  • Yang XJ (2004) Lysine acetylation and the bromodomain: a new partnership for signaling. Bioessays 26:1076–1087

    Article  PubMed  CAS  Google Scholar 

  • You J, Croyle JL, Nishimura A, Ozato K, Howley PM (2004) Interaction of the bovine papillomavirus E2 protein with Brd4 tethers the viral DNA to host mitotic chromosomes. Cell 117:349–360

    Article  PubMed  CAS  Google Scholar 

  • Zhao M, Shirley CR, Mounsey S, Meistrich ML (2004) Nucleoprotein transitions during spermiogenesis in mice with transition nuclear protein Tnp1 and Tnp2 mutations. Biol Reprod 71:1016–1025

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Govin, J., Lestrat, C., Caron, C., Pivot-Pajot, C., Rousseaux, S., Khochbin, S. (2006). Histone Acetylation-Mediated Chromatin Compaction During Mouse Spermatogenesis. In: Berger, S.L., Nakanishi, O., Haendler, B. (eds) The Histone Code and Beyond. Ernst Schering Research Foundation Workshop, vol 57. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-37633-X_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-37633-X_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27857-3

  • Online ISBN: 978-3-540-37633-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics