Skip to main content

Imitation Switch Complexes

  • Conference paper
The Histone Code and Beyond

Part of the book series: Ernst Schering Research Foundation Workshop ((SCHERING FOUND,volume 57))

Abstract

The imitation switch (ISWI) family of chromatin remodelling ATPases is found in organisms ranging from yeast to mammals. ISWI ATPases assemble chromatin and slide and space nucleosomes, making the chromatin template fluid and allowing appropriate regulation of events such as transcription, DNA replication, recombination and repair. The site of action of the ATPases is determined, in part by the tissue type in which the enzyme is expressed and in part by the nature of the proteins associated with the enzyme. The ISWI complexes are generally conserved in composition and function across species. Roles in gene expression and DNA replication in heterochromatin, gene activation and repression in euchromatin, and functions related to maintaining chromosome architecture are associated with different complexes. Defects in ISWI-associated proteins may be associated with neurodegenerative disease, anencephaly, William’s syndrome and melanotic tumours. Finally, the mechanism by which yeast Isw1b influences gene transcription is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Badenhorst P, Voas M, Rebay I, Wu C (2002) Biological functions of the ISWI chromatin remodeling complex NURF. Genes Dev 16:3186–3198

    Article  PubMed  CAS  Google Scholar 

  • Banting GS, Barak O, Ames TM, Burnham AC, Kardel MD, Cooch NS, Davidson CE, Godbout R, McDermid HE, Shiekhattar R (2005) CECR2, a protein involved in neurulation, forms a novel chromatin remodeling complex with SNF2L Hum Mol Genet 14:513–524

    Article  PubMed  CAS  Google Scholar 

  • Barak O, Lazzaro MA, Lane WS, Speicher DW, Picketts DJ, Shiekhattar R (2003) Isolation of human NURF: a regulator of Engrailed gene expression. EMBO J 22:6089–100

    Article  PubMed  CAS  Google Scholar 

  • Barak O, Lazzaro MA, Cooch NS, Picketts DJ, Shiekhattar R (2004) A tissue-specific naturally occurring human SNF2L variant inactivates chromatin remodeling. J Biol Chem 279:45130–45138

    Article  PubMed  CAS  Google Scholar 

  • Becker PB, Horz W (2002) ATP-dependent nucleosome remodelling. Annu Rev Biochem 71:247–273

    Article  PubMed  CAS  Google Scholar 

  • Bernstein BE, Humphrey EL, Erlich RL, Schneider R, Bouman P, Liu JS, Kouzarides T, Schreiber SL (2002) Methylation of histone H3 Lys 4 in coding regions of active genes. Proc Natl Acad Sci U S A 99:8695–700

    Article  PubMed  CAS  Google Scholar 

  • Bhadra MP, Bhadra U, Kundu J, Birchler JA (2005) Gene expression analysis of the function of the male-specific lethal complex in Drosophila. Genetics 169:2061–2074

    Article  PubMed  CAS  Google Scholar 

  • Bochar DA, Savard J, Wang W, Lafleur DW, Moore P, Cote J, Shiekhattar R (2000) A family of chromatin remodeling factors related to Williams syndrome transcription factor. PNAS 97:1038–1043

    Article  PubMed  CAS  Google Scholar 

  • Bonaldi T, Langst G, Strohner R, Becker PB, Bianchi ME (2002) The DNA chaperone HMGB1 facilitates ACF/CHRAC-dependent nucleosome sliding. EMBO J 21:6865–6873

    Article  PubMed  CAS  Google Scholar 

  • Bowser R, Giambrone A, Davies P (1995) FAC1, a novel gene identified with the monoclonal antibody Alz50, is developmentally regulated in human brain. Dev Neurosci 17:20–37

    PubMed  CAS  Google Scholar 

  • Boyer LA, Langer MR, Crowley KA, Tan S, Denu JM, Peterson CL (2002) Essential role for the SANT domain in the functioning of multiple chromatin remodelling enzymes. Mol Cell 10:935–942

    Article  PubMed  CAS  Google Scholar 

  • Bozhenok L, Wade PA, Varga-Weisz P (2002) WSTF-ISWI chromatin remodeling complex targets heterochromatic replication foci. EMBO J 21:2231–2241

    Article  PubMed  CAS  Google Scholar 

  • Clapier CR, Langst G, Corona DF, Becker PB, Nightingale KP (2001) Critical role for the histone H4N terminus in nucleosome remodeling by ISWI. Mol Cell 3:239–245

    Google Scholar 

  • Clapier CR, Nightingale KP, Becker PB (2002) A critical epitope for substrate recognition by the nucleosome remodeling ATPase ISWI. Nucleic Acids Res 30:649–655

    Article  PubMed  CAS  Google Scholar 

  • Collins N, Poot R, Kukimoto I, Garcia-Jimenez C, Dellaire G, Varga-Weisz P (2002) An ACF1-ISWI chromatin-remodeling complex is required for DNA replication through heterochromatin. Nature Genetics 32:627–632

    Article  PubMed  CAS  Google Scholar 

  • Corona DF, Clapier CR, Becker PB, Tamkun JW (2002) Modulation of ISWI function by site-specific histone acetylation. EMBO Rep 3:242–247

    Article  PubMed  CAS  Google Scholar 

  • Cuperus G, Shore D (2002) Restoration of silencing in Saccharomyces cerevisiae by tethering of a novel Sir2-interacting protein Esc8. Genetics 162:633–645

    PubMed  CAS  Google Scholar 

  • De la Cruz X, Lois S, Sanchez-Molina S, Martinez-Balbas MA (2005) Do protein motifs read the histone code? Bioessays 27:164–175

    Article  PubMed  Google Scholar 

  • Deuring R, Fanti L, Armstrong JA, Sarte M, Papoulas O, Prestel M, Daubresse G, Verardo M, Moseley SL, Berlocol M et al. (2000) The ISWI chromatin-remodeling protein is required for gene expression and the maintenance of higher order chromatin structure in vivo. Mol Cell 5:355–365

    Article  PubMed  CAS  Google Scholar 

  • Dhalluin C, Carlson JE, Zeng L, He C, Aggarwal AK, Zhou M-M, Zhou M-M (1999) Structure and ligand of a histone acetyltransferase bromodomain. Nature 399:491–496

    Article  PubMed  CAS  Google Scholar 

  • Doerks T, Copley R, Bork P (2001) DDT — a novel domain in different transcription and chromosome remodeling factors. Trends Biochem Sci 26:145–146

    Article  PubMed  CAS  Google Scholar 

  • Eberharter A, Ferrari S, Langst G, Straub T, Imhof A, Varger-Weisz PD, Wilm M, Becker PB (2001) Acf-1, the largest subunit of CHRAC, regulates ISWI-induced nucleosome remodeling. EMBO J 20:3781–3784

    Article  PubMed  CAS  Google Scholar 

  • Eberharter A, Vetter I, Ferreira R, Becker PB (2004) ACF1 improves the effectiveness of nucleosome mobilization by ISWI through PHD-histone contacts. EMBO J 23:4029–4039

    Article  PubMed  CAS  Google Scholar 

  • Fazzio TG, Kooperberg C, Goldmark JP, Neal C, Basom R, Delrow J, Tsukiyama T (2001) Widespread collaboration of Isw2 Sin3-Rpd3 chromatin remodeling complexes in transcriptional repression. Mol Cell Biol 21:6450–6460

    Article  PubMed  CAS  Google Scholar 

  • Fyodorov DV, Kadonaga JT (2002) Binding of Acf1 to DNA Involves a WAC motif is important for ACF-mediated chromatin assembly. Mol Cell Biol 22:6344–6353

    Article  PubMed  CAS  Google Scholar 

  • Fyodorov DV, Blower MD, Karpen GH, Kadonaga JT (2004) Acf1 confers unique activities to ACF/CHRAC and promotes the formation rather than disruption of chromatin in vivo. Genes Dev 18:170–183

    Article  PubMed  CAS  Google Scholar 

  • Gavin AC, Bosche M, Krause R et al. (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415:141–147

    Article  PubMed  CAS  Google Scholar 

  • Goldmark JP, Fazzio TG, Estep PW, Church GM, Tsukiyama T (2000) The Isw2 chromatin remodeling complex represses early meiotic genes upon recruitment of Ume6p. Cell 103:423–433

    Article  PubMed  CAS  Google Scholar 

  • Grune T, Brzeski J, Eberharter A, Clapier CR, Corona DFV, Becker PB, Muller CW (2003) Crystal structure functional analysis of a nucleosome recognition module of the remodeling factor ISWI. Mol Cell 12:449–460

    Article  PubMed  Google Scholar 

  • Hakimi M-A, Bochar DA, Schmiesing JA, Dong Y, Barak OG, Speicher DW, Yokomori K, Shiekhattar R (2002) A chromatin remodelling complex that loads cohesin onto human chromosomes. Nature 418:994–998

    Article  PubMed  CAS  Google Scholar 

  • Hamiche A, Sandaltzopoulos R, Gdula DA, Wu K (1999) ATP-dependent histone octamer sliding mediated by the chromatin remodeling complex NURF. Cell 97:833–842

    Article  PubMed  CAS  Google Scholar 

  • Hamiche A, Kang J-G, Dennis C, Xiao H, Wu C (2001) Histone tails modulate nucleosome mobility and regulate ATP-dependent nucleosome sliding by NURF. PNAS 98:14316–14321

    Article  PubMed  CAS  Google Scholar 

  • Hilfiker A, Hilfiker Kleiner D, Pannuti A, Lucchesi JC (1997) mof, a putative acetyl transferase gene related to the Tip60 MOZ human genes and to the SAS genes of yeast, is required for dosage compensation in Drosophila. EMBO J 16:2054–2060

    Article  PubMed  CAS  Google Scholar 

  • Hochheimer A, Zhou S, Zheng S, Holmes MC, Tjian R (2002) TRF2 associates with DREF and directs promoter-selective gene expression in Drosophila. Nature 420:439–445

    Article  PubMed  CAS  Google Scholar 

  • Iida T, Araki H (2004) Noncompetitive counteractions of DNA polymerase epsilon ISW2/yCHRAC for epigenetic inheritance of telomere position effect in Saccharomyces cerevisiae. Mol Cell Biol 24:217–227

    Article  PubMed  CAS  Google Scholar 

  • Jordan-Sciutto KL, Dragich JM, Rhodes JL, Bowser R (1999) Fetal Alz-50 Clone 1, a novel zinc finger protein binds a specific DNA sequence acts as a transcriptional regulator. J Biol Chem 274:35262–35268

    Article  PubMed  CAS  Google Scholar 

  • Jordan-Sciutto K, Rhodes J, Bowser R (2001) Altered subcellular distribution of transcriptional regulators in response to Abeta peptide and during Alzheimer’s disease. Mech Ageing Dev 123:11–20

    Article  PubMed  CAS  Google Scholar 

  • Kent NA, Karabetsou N, Politis PK, Mellor J (2001) In vivo chromatin remodeling by yeast ISWI homologs Isw1p and Isw2p. Genes Dev 15:619–626

    Article  PubMed  CAS  Google Scholar 

  • Kent NA, Eibert SM, Mellor J (2004) Cbf1p is required for chromatin remodeling at promoter-proximal CACGTG motifs in yeast. J Biol Chem 279:27116–27123

    Article  PubMed  CAS  Google Scholar 

  • Kikyo N, Wade PA, Guschin D, Ge H, Wolffe AP (2000) Active remodeling of somatic nuclei in egg cytoplasm by the nucleosomal ATPase ISWI. Science 289:2360–2362

    Article  PubMed  CAS  Google Scholar 

  • Kitagawa H, Fujiki R, Yoshimura K, Mezaki Y, Uematsu Y, Matsui D, Ogawa S, Unno K, Okubo M, Tokita A (2003) The chromatin-remodeling complex WINAC targets a nuclear receptor to promoters is impaired in Williams syndrome. Cell 113:905–917

    Article  PubMed  CAS  Google Scholar 

  • Kukimoto I, Elderkin S, Grimaldi M, Oelgeschlager T, Varga-Weisz PD (2004) The histone-fold protein complex CHRAC-15/17 enhances nucleosome sliding assembly mediated by ACF. Mol Cell 13:265–277

    Article  PubMed  CAS  Google Scholar 

  • LeRoy G, Orphanides G, Lane WS, Reinberg D (1998) Requirement of RSF FACT for transcription of chromatin templates in vitro. Science 282:1900–1904

    Article  PubMed  CAS  Google Scholar 

  • LeRoy G, Loyola A, Lane WS, Reinberg D (2000) Purification characterization of a human factor that assembles remodels chromatin. J Biol Chem 275:14787–14790

    Article  PubMed  CAS  Google Scholar 

  • Li J, Santoro R, Koberna K, Grummt I (2005) The chromatin remodeling complex NoRC controls replication timing of rRNA genes. EMBO J 24:120–127

    Article  PubMed  Google Scholar 

  • Loyola A, Huang J-Y, LeRoy G, Hu S, Wang Y-H, Donnelly RJ, Lane WS, Lee S-C, Reinberg D (2003) Functional analysis of the subunits of the chromatin assembly factor RSF. Mol Cell Biol 23:6759–6768

    Article  PubMed  CAS  Google Scholar 

  • Lu X, Meng X, Morris CA, Keating MT (1998) A novel human gene, WSTF, is deleted in Williams syndrome. Genomics 54:241–249

    Article  PubMed  CAS  Google Scholar 

  • Lusser A, Urwin DL, Kadonaga JT (2005) Distinct activities of CHD1 and ACF in ATP-dependent chromatin assembly 12:160–166

    CAS  Google Scholar 

  • MacCallum DE, Losada A, Kobayashi R, Hirano T (2002) ISWI remodeling complexes in Xenopus egg extracts: identification as major chromosomal components that are regulated by INCENP-aurora B. Mol Biol Cell 13:25–39

    Article  PubMed  CAS  Google Scholar 

  • Martinez Balbas MA, Tsukiyama T, Gdula D, Wu C (1998) Drosophila NURF-55, a WD repeat protein involved in histone metabolism. Proc Natl Acad Sci U S A 95:132–137

    Article  PubMed  CAS  Google Scholar 

  • Maurer-Stroh S, Dickens N, Hughes-Davies L, Kouzarides T, Eisenhaber F, Ponting C (2003) The tudor domain ‘royal family’: tudor, plant agent chromo PWWP MBT domains. Trends Bioch Sci 28:69–74

    Article  CAS  Google Scholar 

  • McConnell AD, Gelbart ME, Tsukiyama T (2004) Histone fold protein Dls1p is required for Isw2-dependent chromatin remodeling in vivo. Mol Cell Biol 24:2605–2613

    Article  PubMed  CAS  Google Scholar 

  • Mellor J, Morillon A (2004) ISWI complexes in yeast. Bioch Biophys Acta 1677:100–112

    CAS  Google Scholar 

  • Millen K, Hui C, Joyner A (1995) A role for En-2 and other murine homologues of Drosophila segment polarity genes in regulating positional information in the developing cerebellum. Development 121:3935–3945

    PubMed  CAS  Google Scholar 

  • Moreau J-L, Lee M, Mahachi N, Vary JC Jr, Mellor J, Tsukiyama T, Goding C (2003) Regulated displacement of TBP from the PHO8 promoter in vivo requires Cbf1 and the Isw1 chromatin remodeling complex. Mol Cell 11:1609–1620

    Article  PubMed  CAS  Google Scholar 

  • Morillon A, Karabetsou N, O’Sullivan J, Kent NA, Proudfoot NJ, Mellor J (2003) Isw1 chromatin remodeling ATPase coordinates transcription elongation and termination by RNA polymerase II. Cell 115:425–435

    Article  PubMed  CAS  Google Scholar 

  • Mu X, Springer JE, Bowser R (1997) FAC1 Expression localization in motor neurons of developing adult, and amyotrophic lateral sclerosis spinal cord. Exp Neurol 146:17–24

    Article  PubMed  CAS  Google Scholar 

  • Poot RA, Bozhenok L, van den Berg DLC, Steffensen S, Ferreira F, Grimaldi M, Gilbert N, Ferreira J, Varga-Weisz PD (2004) The Williams syndrome transcription factor interacts with PCNA to target chromatin remodelling by ISWI to replication foci. Nat Cell Biol 6:1236–1244

    Article  PubMed  CAS  Google Scholar 

  • Pray-Grant MG, Daniel JA, Schieltz D, Yates JR III, Grant PA (2005) Chd1 chromodomain links histone H3 methylation with SAGA-SLIK-dependent acetylation. Nature 433:434–438

    Article  PubMed  CAS  Google Scholar 

  • Ruiz C, Escribano V, Morgado E, Molina M, Mazon MJ (2003) Cell-typedependent repression of yeast a-specific genes requires Itc1p, a subunit of the Isw2p-Itc1p chromatin remodelling complex. Microbiology 149:341–351

    Article  PubMed  CAS  Google Scholar 

  • Santos-Rosa H, Schneider R, Bannister AJ, Sherriff J, Bernstein BE, Emre NC, Schreiber SL, Mellor J, Kouzarides T (2002) Active genes are tri-methylated at K4 of histone H3. Nature 419:407–411

    Article  PubMed  CAS  Google Scholar 

  • Santos-Rosa H, Schneider R, Bernstein BE, Karabetsou N, Morillon A, Weise C, Schreiber SL, Mellor J, Kouzarides T (2003) Methylation of histone H3K4 mediates association of the Isw1p ATPase with chromatin. Mol Cell 12:1325–1332

    Article  PubMed  CAS  Google Scholar 

  • Schwanbeck R, Xiao H, Wu C (2004) Spatial contacts nucleosome step movements induced by the NURF chromatin remodeling complex. J Biol Chem 279:39933–39941

    Article  PubMed  CAS  Google Scholar 

  • Shimizu M, Takahashi K, Lamb TM, Shindo H, Mitchell AP (2003) Yeast Ume6p repressor permits activator binding but restricts TBP binding at the HOP1 promoter. Nucleic Acids Res 31:3033–3037

    Article  PubMed  CAS  Google Scholar 

  • Stopka T, Skoultchi AI (2003) The ISWI ATPase Snf2h is required for early mouse development. PNAS 100:14097–14102

    Article  PubMed  CAS  Google Scholar 

  • Strohner R, Nemeth A, Jansa P, Hofmann-Rohrer U, Santoro R, Langst G, Grummt I (2001) NoRC — a novel member of mammalian ISWI-containing chromatin remodeling machines. EMBO J 20:4892–4900

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama M, Nikawa J (2001) The Saccharomyces cerevisiae Isw2p-Itc1p complex represses INO1 expression and maintains cell morphology. J Bacteriol 183:4985–4993

    Article  PubMed  CAS  Google Scholar 

  • Trachtulkova P, Janatova I, Kohlwein SD, Hasek J (2000) Saccharomyces cerevisiae gene ISW2 encodes a mircotubule-interacting protein required for pre-meiotic DNA replication. Yeast 16:35–47

    Article  Google Scholar 

  • Trachtulcova P, Frydlova I, Janatova I, Hasek J (2004) The absence of the Isw2p-Itc1p chromatin-remodelling complex induces mating type-specific Flo11p-independent invasive growth of Saccharomyces cerevisiae. Yeast 21:389–401

    Article  PubMed  CAS  Google Scholar 

  • Tsukiyama T, Palmer J, Landel CC, Shiloach J, Wu C (1999) Characterization of the imitation switch subfamily of ATP-dependent chromatin-remodeling factors in Saccharomyces cerevisiae. Genes Dev 13:686–697

    PubMed  CAS  Google Scholar 

  • Vary JC Jr, Gangaraju VK, Qin J, Landel CC, Kooperberg C, Bartholomew B, Tsukiyama T (2003) Yeast Isw1p forms two separable complexes in vivo. Mol Cell Biol 23:80–91

    Article  PubMed  CAS  Google Scholar 

  • Xiao H, Sandaltzopoulos R, Wang HM, Hamiche A, Ranallo R, Lee KM, Fu D, Wu C (2001) Dual function of largest NURF subunit NURF 301 in nucleosome sliding and transcriptional interactions. Mol Cell 8:531–543

    Article  PubMed  CAS  Google Scholar 

  • Yasui D, Miyano M, Cai S, Varga-Weisz P, Kohwi-Shigematsu T (2002) SATB1 targets chromatin remodelling to regulate genes over long distances. Nature 419:641–645

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Reese JC (2004a) Redundant mechanisms are used by Ssn6-Tup1 in repressing chromosomal gene transcription in Saccharomyces cerevisiae. J Biol Chem 279:39240–39250

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Reese JC (2004b) Ssn6-Tup1 requires the ISW2 complex to position nucleosomes in Saccharomyces cerevisiae. EMBO J 23:2246–2257

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mellor, J. (2006). Imitation Switch Complexes. In: Berger, S.L., Nakanishi, O., Haendler, B. (eds) The Histone Code and Beyond. Ernst Schering Research Foundation Workshop, vol 57. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-37633-X_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-37633-X_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27857-3

  • Online ISBN: 978-3-540-37633-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics