Skip to main content

Interplay of the SUMO and MAP Kinase Pathways

  • Conference paper
The Histone Code and Beyond

Part of the book series: Ernst Schering Research Foundation Workshop ((SCHERING FOUND,volume 57))

Abstract

The SUMO modification pathway has been linked with controlling the activity of numerous transcriptional regulatory proteins. In the majority of substrates studied so far, sumoylation imparts repressive properties. In several cases, part of this mechanism has been shown to be due to SUMO-dependent recruitment of histone deacetylases (HDACs). This is exemplified by the transcription factor Elk-1, where HDAC-2 is specifically recruited in response to sumoylation. Importantly, activation of the ERK MAP kinase pathway leads to Elk-1 desumoylation and HDAC loss. Furthermore, PIAS proteins can regulate the activities of transcription factors in SUMO-dependent and -independent manners. Further links between the MAP kinase pathways and PIAS proteins have been uncovered, suggesting a complex interplay been the MAP kinase and SUMO modification pathways. Here we discuss the current evidence suggesting links between the SUMO and MAP kinase pathways and point to other potential regulatory events and how these might be affected in cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aravind L, Koonin EV (2000) SAP — a putative DNA-binding motif involved in chromosomal organization. Trends Biochem Sci 25:112–114

    Article  PubMed  CAS  Google Scholar 

  • Boggio R, Colombo R, Hay RT, Draetta GF, Chiocca S (2004) A mechanism for inhibiting the SUMO pathway. Mol Cell 16:549–561

    Article  PubMed  CAS  Google Scholar 

  • Chung CD, Liao J, Liu B, Rao X, Jay P, Berta P, Shuai K (1997) Specific inhibition of Stat3 signal transduction by PIAS3. Science 278:1803–1805

    Article  PubMed  CAS  Google Scholar 

  • Comerford KM, Leonard MO, Karhausen J, Carey R, Colgan SP, Taylor CT (2003) Small ubiquitin-related modifier-1 modification mediates resolution of CREB-dependent responses to hypoxia. Proc Natl Acad Sci U S A 100:986–991

    Article  PubMed  CAS  Google Scholar 

  • Gill G (2003) Post-translational modification by the small ubiquitin-related modifier SUMO has big effects on transcription factor activity. Curr Opin Genet Dev 13:108–113

    Article  PubMed  CAS  Google Scholar 

  • Gill G (2004) SUMO and ubiquitin in the nucleus: different functions, similar mechanisms? Genes Dev 18:2046–2059

    Article  PubMed  CAS  Google Scholar 

  • Girdwood D, Bumpass D, Vaughan OA, Thain A, Anderson LA, Snowden AW, Garcia-Wilson E, Perkins ND, Hay RT (2003) p300 transcriptional repression is mediated by SUMO modification. Mol Cell 11:1043–1054

    Article  PubMed  CAS  Google Scholar 

  • Hay RT (2001) Protein modification by SUMO. Trends Biochem Sci 26:332–333

    Article  PubMed  CAS  Google Scholar 

  • Hayakawa F, Privalsky ML (2004) Phosphorylation of PML by mitogen-activated protein kinases plays a key role in arsenic trioxide-mediated apoptosis. Cancer Cell 5:389–401

    Article  PubMed  CAS  Google Scholar 

  • Hietakangas V, Ahlskog JK, Jakobsson AM, Hellesuo M, Sahlberg NM, Holmberg CI, Mikhailov A, Palvimo JJ, Pirkkala L, Sistonen L (2003) Phosphorylation of serine 303 is a prerequisite for the stress-inducible SUMO modification of heat shock factor 1. Mol Cell Biol 23:2953–2968

    Article  PubMed  CAS  Google Scholar 

  • Kagey MH, Melhuish TA, Wotton D (2003) The polycomb protein Pc2 is a SUMO E3. Cell 113:127–137

    Article  PubMed  CAS  Google Scholar 

  • Kagey MH, Melhuish TA, Powers SE, Wotton D (2005) Multiple activities contribute to Pc2 E3 function. EMBO J 14:108–119

    Article  Google Scholar 

  • Kahyo T, Nishida T, Yasuda H (2001) Involvement of PIAS1 in the sumoylation of tumor suppressor p53. Mol Cell 8:713–718

    Article  PubMed  CAS  Google Scholar 

  • Kirsh O, Seeler JS, Pichler A, Gast A, Muller S, Miska E, Mathieu M, Harel-Bellan A, Kouzarides T, Melchior F, Dejean A (2002) The SUMO E3 ligase RanBP2 promotes modification of the HDAC4 deacetylase. EMBO J 21:2682–2691

    Article  PubMed  CAS  Google Scholar 

  • Kotaja N, Karvonen U, Janne OA, Palvimo JJ (2002a) The nuclear receptor interaction domain of GRIP1 is modulated by covalent attachment of SUMO-1. J Biol Chem 277:30283–30288

    Article  PubMed  CAS  Google Scholar 

  • Kotaja N, Karvonen U, Janne OA, Palvimo JJ (2002b) PIAS proteins modulate transcription factors by functioning as SUMO-1 ligases. Mol Cell Biol 22:5222–5234

    Article  PubMed  CAS  Google Scholar 

  • Legube G, Trouche D (2003) Regulating histone acetyltransferases and deacetylases. EMBO Rep 4:944–947

    Article  PubMed  CAS  Google Scholar 

  • Li Q-J, Yang S-H, Maeda Y, Sladek FM, Sharrocks AD, Martins-Green M (2003) MAP kinase phosphorylation-dependent activation of Elk-1 leads to activation of the coactivator p300. EMBO J 22:281–291

    Article  PubMed  CAS  Google Scholar 

  • Ling Y, Sankpal UT, Robertson AK, McNally JG, Karpova T, Robertson KD (2004) Modification of de novo DNA methyltransferase 3a (Dnmt3a) by SUMO-1 modulates its interaction with histone deacetylases (HDACs) and its capacity to repress transcription. Nucleic Acids Res 32:598–610

    Article  PubMed  CAS  Google Scholar 

  • Megidish T, Xu JH, Xu CW (2002) Activation of p53 by protein inhibitor of activated Stat1 (PIAS1). J Biol Chem 277:8255–8259

    Article  PubMed  CAS  Google Scholar 

  • Muller S, Hoege C, Pyrowolakis G, Jentsch S (2001) SUMO, ubiquitin’s mysterious cousin. Nat Rev Mol Cell Biol 2:202–210

    Article  PubMed  CAS  Google Scholar 

  • Muller S, Matunis MJ, Dejean A (1998) Conjugation with the ubiquitin-related modifier SUMO-1 regulates the partitioning of PML within the nucleus. EMBO J 17:61–70

    Article  PubMed  CAS  Google Scholar 

  • Ohshima T, Shimotohno K (2003) Transforming growth factor-beta-mediated signaling via the p38 MAP kinase pathway activates Smad-dependent transcription through SUMO-1 modification of Smad4. J Biol Chem 278:50833–50842

    Article  PubMed  CAS  Google Scholar 

  • Pichler A, Knipscheer P, Saitoh H, Sixma TK, Melchior F (2004) The RanBP2 SUMO E3 ligase is neither. Nat Struct Mol Biol 11:984–991

    Article  PubMed  CAS  Google Scholar 

  • Rogers RS, Horvath CM, Matunis MJ (2003) SUMO modification of STAT1 and its role in PIAS-mediated inhibition of gene activation. J Biol Chem 278:30091–30097

    Article  PubMed  CAS  Google Scholar 

  • Ross S, Best JL, Zon LI, Gill G (2002) SUMO-1 modification represses Sp3 transcriptional activation and modulates its subnuclear localization. Mol Cell 10:831–842

    Article  PubMed  CAS  Google Scholar 

  • Roux PP, Blenis J (2004) ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev 68:320–344

    Article  PubMed  CAS  Google Scholar 

  • Sachdev S, Bruhn L, Sieber H, Pichler A, Melchior F, Grosschedl R (2001) PIASy, a nuclear matrix-associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies. Genes Dev 15:3088–3103

    Article  PubMed  CAS  Google Scholar 

  • Salinas S, Briancon-Marjollet A, Bossis G, Lopez MA, Piechaczyk M, Jariel-Encontre I, Debant A, Hipskind RA (2004) SUMOylation regulates nucleocytoplasmic shuttling of Elk-1. J Cell Biol 165:767–773

    Article  PubMed  CAS  Google Scholar 

  • Schmidt D, Muller S (2002) Members of the PIAS family act as SUMO ligases for c-Jun and p53 and repress p53 activity. Proc Natl Acad Sci U S A 99:2872–2877

    Article  PubMed  CAS  Google Scholar 

  • Schmidt D, Muller S (2003) PIAS/SUMO: new partners in transcriptional regulation. Cell Mol Life Sci 60:2561–2574

    Article  PubMed  CAS  Google Scholar 

  • Sharma M, Li X, Wang Y, Zarnegar M, Huang CY, Palvimo JJ, Lim B, Sun Z (2003) hZimp10 is an androgen receptor co-activator and forms a complex with SUMO-1 at replication foci. EMBO J 22:6101–6114

    Article  PubMed  CAS  Google Scholar 

  • Sharrocks AD (2002) Complexities in ETS-domain transcription factor function and regulation; lessons from the TCF subfamily. Biochem Soc Trans 30:1–9

    Article  PubMed  CAS  Google Scholar 

  • Shaw PE, Saxton J (2003) Ternary complex factors: prime nuclear targets for mitogen-activated protein kinases. Int J Biochem Cell Biol 35:1210–1226

    Article  PubMed  CAS  Google Scholar 

  • Shiio Y, Eisenman RN (2003) Histone sumoylation is associated with transcriptional repression. Proc Natl Acad Sci U S A 100:13225–13230

    Article  PubMed  CAS  Google Scholar 

  • Song J, Durrin LK, Wilkinson TA, Krontiris TG, Chen Y (2004) Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proc Natl Acad Sci U S A 101:14373–14378

    Article  PubMed  CAS  Google Scholar 

  • Stevens JL, Cantin GT, Wang G, Shevchenko A, Shevchenko A, Berk AJ (2002) Transcription control by E1A and MAP kinase pathway via Sur2 mediator subunit. Science 296:755–758

    Article  PubMed  CAS  Google Scholar 

  • Subramanian L, Benson MD, Iniguez-Lluhi JA (2003) A synergy control motif within the attenuator domain of CCAAT/enhancer-binding protein alpha inhibits transcriptional synergy through its PIASy-enhanced modification by SUMO-1 or SUMO-3. J Biol Chem 278:9134–9141

    Article  PubMed  CAS  Google Scholar 

  • Tatham MH, Kim S, Jaffray E, Song J, Chen Y, Hay RT (2005) Unique binding interactions among Ubc9, SUMO and RanBP2 reveal a mechanism for SUMO paralog selection. Nat Struct Mol Biol 12:67–74

    Article  PubMed  CAS  Google Scholar 

  • Ungureanu D, Vanhatupa S, Kotaja N, Yang J, Aittomaki S, Janne OA, Palvimo JJ, Silvennoinen O (2003) PIAS proteins promote SUMO-1 conjugation to STAT1. Blood 102:3311–3313

    Article  PubMed  CAS  Google Scholar 

  • Verger A, Perdomo J, Crossley M (2003) Modification with SUMO: a role in transcriptional regulation. EMBO Rep 4:137–142

    Article  PubMed  CAS  Google Scholar 

  • Wilson VG, Rangasamy D (2001) Viral interaction with the host cell sumoylation system. Virus Res 81:17–27

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto H, Ihara M, Matsuura Y, Kikuchi A (2003) Sumoylation is involved in beta-catenin-dependent activation of Tcf-4. EMBO J 22:2047–2059

    Article  PubMed  CAS  Google Scholar 

  • Yang SH, Vickers E, Brehm A, Kouzarides T, Sharrocks AD (2001) Temporal recruitment of the mSin3A-histone deacetylase corepressor complex to the ETS domain transcription factor Elk-1. Mol Cell Biol 21:2802–2814

    Article  PubMed  CAS  Google Scholar 

  • Yang SH, Bumpass DC, Perkins ND, Sharrocks AD (2002) The ETS domain transcription factor Elk-1 contains a novel class of repression domain. Mol Cell Biol 22:5036–5046

    Article  PubMed  CAS  Google Scholar 

  • Yang SH, Jaffray E, Hay RT, Sharrocks AD (2003a) Dynamic interplay of the SUMO and ERK pathways in regulating Elk-1 transcriptional activity. Mol Cell 12:63–74

    Article  PubMed  CAS  Google Scholar 

  • Yang SH, Sharrocks AD, Whitmarsh AJ (2003b) Transcriptional regulation by the MAP kinase signaling cascades. Gene 320:3–21

    Article  PubMed  CAS  Google Scholar 

  • Yang SH, Sharrocks AD (2004) SUMO promotes HDAC-mediated transcriptional repression. Mol Cell 13:611–617

    Article  PubMed  CAS  Google Scholar 

  • Yang SH, Sharrocks AD (2005) PIASx acts as an Elk-1 coactivator by facilitating derepression. EMBO J 24:2161–2171

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yang, S.H., Sharrocks, A.D. (2006). Interplay of the SUMO and MAP Kinase Pathways. In: Berger, S.L., Nakanishi, O., Haendler, B. (eds) The Histone Code and Beyond. Ernst Schering Research Foundation Workshop, vol 57. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-37633-X_11

Download citation

  • DOI: https://doi.org/10.1007/3-540-37633-X_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27857-3

  • Online ISBN: 978-3-540-37633-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics