Skip to main content

Algebraic and Geometric Structures in Special Relativity

  • Chapter
Special Relativity

Part of the book series: Lecture Notes in Physics ((LNP,volume 702))

Abstract

I review, on an advanced level, some of the algebraic and geometric structures that underlie the theory of Special Relativity. This includes a discussion of relativity as a symmetry principle, derivations of the Lorentz group, its composition law, its Lie algebra, comparison with the Galilei group, Einstein synchronization, the lattice of causally and chronologically complete regions in Minkowski space, rigid motion, and the geometry of rotating reference frames. Representation-theoretic aspects of the Lorentz group are not included. A series of appendices present some related mathematical material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander Danilovich Alexandrov. Mappings of spaces with families of cones and space-time transformations. Annali di Matematica (Bologna), 103(8):229–257, 1975.

    Article  MathSciNet  Google Scholar 

  2. James Anderson. Principles of Relativity Physics. Academic Press, New York, 1967.

    Google Scholar 

  3. Henri Bacry and Jean-Marc Lévy-Leblond. Possible kinematics. Journal of Mathematical Physics, 9(10):1605–1614, 1968.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Frank Beckman and Donald Quarles. On isometries of euclidean spaces. Proceedings of the American Mathematical Society, 4:810–815, 1953.

    Article  MathSciNet  MATH  Google Scholar 

  5. Enrico Beltrametti and Gianni Cassinelli. The Logic of Quantum Mechanics. Encyclopedia of Mathematics and its Application Vol. 15. Addison-Wesley, Reading, Massachusetts, 1981.

    Google Scholar 

  6. Marcel Berger. Geometry, volume I. Springer Verlag, Berlin, first edition, 1987. Corrected second printing 1994.

    Book  Google Scholar 

  7. Marcel Berger. Geometry, volume II. Springer Verlag, Berlin, first edition, 1987. Corrected second printing 1996.

    Google Scholar 

  8. Vittorio Berzi and Vittorio Gorini. Reciprocity principle and the Lorentz transformations. Journal of Mathematical Physics, 10(8):1518–1524, 1969.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  9. David Bleecker. Gauge Theory and Variational Principles. Number 1 in Global Analysis, Pure and Applied. Addison-Wesley, Reading, Massachusetts, 1981.

    MATH  Google Scholar 

  10. Hans-Jürgen Borchers and Gerhard Hegerfeld. The structure of space-time transformations. Communications in Mathematical Physics, 28:259–266, 1972.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Émile Borel. La théorie de la relativité et la cinématique. In Œuvres de Émile Borel, volume 3, pages 1809–1811. Editions du Centre National de la Recherche Scientifique, Paris, 1972. First appeared in Comptes Rendus des séances de l’Académie des Sciences 156 (1913): 215–217.

    Google Scholar 

  12. Max Born. Die Theorie des starren Elektrons in der Kinematik des Relativitätsprinzips. Annalen der Physik (Leipzig), 30:1–56, 1909.

    Article  ADS  Google Scholar 

  13. Horacio Casini. The logic of causally closed spacetime subsets. Classical and Quantum Gravity, 19:6389–6404, 2002.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Wojciech Cegła and Arkadiusz Jadczyk. Logics generated by causality structures. covariant representations of the galilei group. Reports on Mathematical Physics, 9(3):377–385, 1976.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  15. Wojciech Cegła and Arkadiusz Jadczyk. Causal logic of Minkowski space. Communications in Mathematical Physics, 57:213–217, 1977.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Alexander Chubarev and Iosif Pinelis. Linearity of space-time transformations without the one-to-one, line-onto-line, or constancy-of-speed-of-light assumption. Communications in Mathematical Physics, 215:433–441, 2000.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Paul Ehrenfest. Gleichförmige Rotation starrer Körper und Relativitätstheorie. Physikalische Zeitschrift, 10(23):918, 1909.

    Google Scholar 

  18. Vladimir Fock. The Theory of Space Time and Gravitation. Pergamon Press, London, first english edition, 1959.

    MATH  Google Scholar 

  19. Philipp Frank and Hermann Rothe. Über die Transformation der Raumzeitkoordinaten von ruhenden auf bewegte Systeme. Annalen der Physik (Leipzig), 34(5):825–855, 1911.

    Article  ADS  Google Scholar 

  20. Philipp Frank and Hermann Rothe. Zur Herleitung der Lorentztransformation. Physikalische Zeitschrift, 13:750–753, 1912. Erratum: ibid, p. 839.

    Google Scholar 

  21. Wilhelm I. Fushchich, Vladimir M. Shtelen, and N.I. Serov. Symmetry Analysis and Exact Solutions of Equations of Nonlinear Mathematical Physics. Kluwer Academic Publishers, Dordrecht, 1993.

    MATH  Google Scholar 

  22. Domenico Giulini. Advanced Special Relativity. Oxford University Press, Oxford. To appear.

    Google Scholar 

  23. Domenico Giulini. On Galilei invariance in quantum mechanics and the Bargmann superselection rule. Annals of Physics (New York), 249(1):222–235, 1996.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Domenico Giulini. Uniqueness of simultaneity. Britisch Journal for the Philosophy of Science, 52:651–670, 2001. 110 D. Giulini

    MathSciNet  Google Scholar 

  25. Domenico Giulini. Das Problem der Trägheit. Philosophia Naturalis, 39(2):843–374, 2002.

    MathSciNet  Google Scholar 

  26. Domenico Giulini and Norbert Straumann. Einstein’s impact on the physics of the twentieth century. Studies in the History and Philisophy of Modern Physics, to appear, 2006. ArXiv physics/0507107.

    Google Scholar 

  27. Rudolf Haag. Local Quantum Physics. Springer Verlag, Berlin, first 1991 second revised and enlarged 1996 edition, 1996.

    MATH  Google Scholar 

  28. Gerhard Hegerfeld. The Lorentz transformations: Derivation of linearity and scale factor. Il Nuovo Cimento, 10 A(2):257–267, 1972.

    ADS  Google Scholar 

  29. Gustav Herglotz. Über den vom Standpunkt des Relativitätsprinzips aus als “starr” zu bezeichnenden Körper. Annalen der Physik (Leipzig), 31:393–415, 1910.

    Article  ADS  Google Scholar 

  30. Wladimir von Ignatowsky. Einige allgemeine Bemerkungen zum Relativitätsprinzip. Verhandlungen der Deutschen Physikalischen Gesellschaft, 12:788–796, 1910.

    Google Scholar 

  31. Erdal Inönü and Eugen Wigner. On the cotraction of groups and their representations. Proceedings of the National Academy of Sciences, 39(6):510–524, 1953.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  32. Nathan Jacobson. Basic Algebra I. W.H. Freeman and Co., New York, second edition, 1985.

    MATH  Google Scholar 

  33. Josef M. Jauch. Foundations of Quantum Mechanics. Addison-Wesley, Reading, Massachusetts, 1968.

    MATH  Google Scholar 

  34. Theodor Kaluza. Zur Relativitätstheorie. Physikalische Zeitschrift, 11:977–978, 1910.

    Google Scholar 

  35. Felix Klein. Vergleichende Betrachtungen über neuere geometrische Forschungen. Verlag von Andreas Deichert, Erlangen, first edition, 1872. Reprinted in Mathematische Annalen (Leipzig) 43 (1892) 43–100.

    Google Scholar 

  36. Max von Laue. Zur Diskussion über den starren Körper in der Relativitätstheorie. Physikalische Zeitschrift, 12:85–87, 1911.

    Google Scholar 

  37. Fritz Noether. Zur Kinematik des starren Körpers in der Relativitätstheorie. Annalen der Physik (Leipzig), 31:919–944, 1910.

    Article  ADS  Google Scholar 

  38. Felix Pirani and Gareth Williams. Rigid motion in a gravitational field. Séminaire JANET (Mécanique analytique et Mécanique céleste), 5e année(8):1–16, 1962.

    Google Scholar 

  39. Alfred A. Robb. Optical Geometry of Motion: A New View of the Theory of Relativity. W. Heffer & Sons Ltd., Cambridge, 1911.

    Google Scholar 

  40. Roman U. Sexl and Helmuth K. Urbantke. Relativity, Groups, Particles. Springer Verlag, Wien, first edition, 2001. First english edition, succeeding the 1992 third revised german edition.

    MATH  Google Scholar 

  41. Arnold Sommerfeld. Über die Zusammensetzung der Geschwindigkeiten in der Relativtheorie. Physikalische Zeitschrift, 10:826–829, 1909.

    Google Scholar 

  42. Llewellyn Hilleth Thomas. The kinematics of an electron with an axis. Philosophical Magazine, 3:1–22, 1927.

    Google Scholar 

  43. Andrzej Trautman. Foundations and current problems of general relativity. In A. Trautman, F.A.E. Pirani, and H. Bondi, editors, Lectures on General Relativity, volume 1 of Brandeis Summer Institute in Theoretical Physics, pages 1–248. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1964.

    Google Scholar 

  44. Abraham Ungar. Thomas rotation and the parametrization of the Lorentz transformation group. Foundations of Physics Letters, 1(1):57–89, 1988.

    Article  MathSciNet  ADS  Google Scholar 

  45. Abraham Ungar. Beyond Einstein’s Velocity Addition Law, volume 117 of Fundamental Theories of Physics. Kluwer Academic, Dordrecht, 2001.

    Google Scholar 

  46. Abraham Ungar. Analytic Hyperbolic Geometry: Mathematical Foundations and Applications. World Scientific, Singapore, 2005.

    Book  MATH  Google Scholar 

  47. Helmuth Urbantke. Physical holonomy: Thomas precession, and Clifford algebra. American Journal of Physics, 58(8):747–750, 1990. Erratum ibid. 59(12), 1991, 1150–1151.

    Article  MathSciNet  ADS  Google Scholar 

  48. Helmuth Urbantke. Lorentz transformations from reflections: Some applications. Foundations of Physics Letters, 16:111–117, 2003. ArXiv math-ph/0212038.

    Article  MathSciNet  Google Scholar 

  49. Vladimir Varičcak. Anwendung der Lobatschefskijschen Geometrie in der Relativtheorie. Physikalische Zeitschrift, 11:93–96, 1910.

    Google Scholar 

  50. Vladimir Varičak. Über die nichteuklidische Interpretation der Relativtheorie. Jahresberichte der Deutschen Mathematikervereinigung (Leipzig), 21:103–127, 1912.

    Google Scholar 

  51. Erik Christopher Zeeman. Causality implies the Lorentz group. Journal of Mathematical Physics, 5(4):490–493, 1964.

    Article  MathSciNet  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Giulini, D. (2006). Algebraic and Geometric Structures in Special Relativity. In: Ehlers, J., Lämmerzahl, C. (eds) Special Relativity. Lecture Notes in Physics, vol 702. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-34523-X_4

Download citation

Publish with us

Policies and ethics