Skip to main content

Test Theories for Lorentz Invariance

  • Chapter
Special Relativity

Part of the book series: Lecture Notes in Physics ((LNP,volume 702))

Abstract

After a very short review of the principles underlying Special Relativity, their meaning, and their consequences, we first describe the basic experiments testing SR in a model–independent way which is the most basic way to describe experiments testing the foundations of SR. In order to be able to give quantitative estimates of the validation of SR and, even more important, in order to be able to compare conceptually different experiments, one introduces test theories. We give a review of test theories needed for a consistent description of tests of Lorentz Invariance. The main emphasize is on kinematical test theories of Robertson and Mansouris–Sexl type. Though these test theories were very important in reaching a new understanding of the experimental foundation of SR, an extensive discussion shows that are kinematical test theories are incomplete and, thus, dynamical test theories like the Standard Model Extension are superior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.M. Will. The confrontation between general relativity and experiment. Living Rev. Relativity, 4: 2001, http://www.livingreviews.org/lrr-2001-4

    Google Scholar 

  2. G. Amelino-Camelia, C. Lämmerzahl, A. Macias, and H. Müller. The search for quantum gravity signals. In A. Macias, C. Lämmerzahl, and D. Nunez, editors, Gravitation and Cosmology, p. 30. AIP Conference Proceedings 758, Melville, New York, 2005.

    Google Scholar 

  3. D. Mattingly. Modern tests of lorentz invariance. Living Rev. Relativity, 8: 2005, http://www.livingreviews.org/lrr-2005-5 (cited on Dec. 15, 2005)

    Google Scholar 

  4. C. Lämmerzahl. Relativity and technology. Ann. Physik (Leipzig), 15: 5, 2006.

    Article  ADS  Google Scholar 

  5. M. Haugan and C.M. Will. Modern tests of special relativity. Physics Today, May:69, 1987.

    Article  Google Scholar 

  6. M.D. Gabriel and M.P. Haugan. Testing the Einstein Equivalence Principle: Atomic clocks and local Lorentz invariance. Phys. Rev., D 41:2943, 1990.

    ADS  Google Scholar 

  7. A.P. Lightman and D.L. Lee. Restricted proof that the weak equivalence principle implies the Einstein equivalence principle. Phys. Rev., D 8:364, 1973.

    ADS  Google Scholar 

  8. H.P. Robertson. Postulate versus observation in the Special Theory of Relativity. Rev. Mod. Phys., 21:378, 1949.

    Article  MATH  ADS  Google Scholar 

  9. R. Mansouri and R.U. Sexl. A test theory of special relativity: I. Simultaneity and clock synchronisation. Gen. Rel. Grav., 8:497, 1977.

    Article  ADS  Google Scholar 

  10. C.M. Will. Theory and Experiment in Gravitational Physics (Revised Edition). Cambridge University Press, Cambridge, 1993.

    Google Scholar 

  11. D. Colladay and V.A. Kostelecky. Lorentz-violating extension of the standard model. Phys. Rev., D 58:116002, 1998.

    ADS  Google Scholar 

  12. C. Lämmerzahl, A. Macias, and H. Müller. Lorentz invariance violation and charge (non-)conservation: A general theoretical frame for extensions of the Maxwell equations. Phys. Rev., D:to appear, 2005.

    Google Scholar 

  13. A.A. Michelson and E.W. Morley. On the relative motion of the Earth and the luminiferous ether. Am. J. Sci., 34:333, 1887.

    Google Scholar 

  14. H. Müller, S. Herrmann, A. Saenz, A. Peters, and C. Lämmerzahl. Optical cavity tests of Lorentz invariance for the electron. Phys. Rev., D 68:116006, 2003.

    ADS  Google Scholar 

  15. R.S. Shankland, S.W. McCuskey, F.C. Leone, and G. Kuerti. New analysis of the interferometer observations of Dayton C. Miller. Rev. Mod. Phys., 27:167, 1955.

    Article  ADS  Google Scholar 

  16. E.W. Morley and D.C. Miller. (letter to Lord Kelvin). Phil. Mag., 8:753, 1904.

    Google Scholar 

  17. E.W. Morley and D.C. Miller. Report of an experiment to detect the FitzGerald- Lorentz-effect. Phil. Mag., 9:680, 1905.

    Google Scholar 

  18. L. Essen. A new aetherdrift experiment. Nature, 175:793, 1955.

    Article  ADS  Google Scholar 

  19. V.A. Fock. Theorie von Raum, Zeit und Gravitation. Akademie-Verlag, Berlin, 1960.

    MATH  Google Scholar 

  20. H. Reichenbach. Axiomatik der Raum-Zeit Lehre. deGruyter, Berlin, 1924.

    MATH  Google Scholar 

  21. A. Grünbaum. Philosophical Problems of Space and Time. D. Reidel, Dordrecht, 1973.

    MATH  Google Scholar 

  22. J.A. Winnie. Special Relativity without one-way velocity assumptions: Part I. Philosophy of Science, 37:81, 1968.

    Article  Google Scholar 

  23. W.F. Edwards. Special relativity in aniosotropic space. Am. J. Phys., 31:482, 1963.

    Article  MATH  ADS  Google Scholar 

  24. J.A. Winnie. Special Relativity without one-way velocity assumptions: Part II. Philosophy of Science, 37:223, 1968.

    Article  Google Scholar 

  25. Y.Z. Zhang. Test theories of special relativity. Gen. Rel. Grav., 27:475, 1994.

    Article  ADS  Google Scholar 

  26. C.M. Will. The confrontation between general relativity and experiment: a 1992 update. Int. J. Mod. Phys., D 1:13, 1992.

    MATH  MathSciNet  ADS  Google Scholar 

  27. C. Lämmerzahl, C. Braxmaier, H.-J. Dittus, H. Müller, A. Peters, and S. Schiller. Kinematical test theories for special relativity: A comparison. Int. J. Mod. Phys., D 11:1109, 2002.

    MATH  ADS  Google Scholar 

  28. C.H. Lineweaver, L. Tenorio, G.F. Smoot, P. Keegstra, A.J. Banday, and P. Lubin. The dipole observed in the cobe dmr 4 year data. Astroph. J., 470:38, 1996.

    Article  ADS  Google Scholar 

  29. V.A. Kostelecky and S. Samuel. Spontaneous breaking of Lorentz symmetry in string theory. Phys. Rev., D 39:1611, 1989.

    ADS  Google Scholar 

  30. R. Bluhm. Overview of the SME: Implications and phenomenology of Lorentz violation. Lect. Notes Phys. 702, pp. 191–226, 2006.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Lämmerzahl, C. (2006). Test Theories for Lorentz Invariance. In: Ehlers, J., Lämmerzahl, C. (eds) Special Relativity. Lecture Notes in Physics, vol 702. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-34523-X_12

Download citation

Publish with us

Policies and ethics