Skip to main content

Biological Optimization

  • Chapter
Image-Guided IMRT

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hope CS, Laurie J et al. (1967) Optimization of X-ray treatment planning by computer judgement. Phys Med Biol 12(4):531–542

    Article  PubMed  CAS  Google Scholar 

  2. Bahr GK, Kereiakes JG et al. (1968) The method of linear programming applied to radiation treatment planning. Radiology 91(4):686–693

    PubMed  CAS  Google Scholar 

  3. Hodes L (1974) Semiautomatic optimization of external beam radiation treatment planning. Radiology 110(1):191–196

    PubMed  CAS  Google Scholar 

  4. McDonald SC, Rubin P (1977) Optimization of external beam radiation therapy. Int J Radiat Oncol Biol Phys 2(3/4):307–317

    PubMed  CAS  Google Scholar 

  5. Starkschall G (1984) A constrained least-squares optimization method for external beam radiation therapy treatment planning. Med Phys 11(5):659–665

    Article  PubMed  CAS  Google Scholar 

  6. Powlis WD, Altschuler MD et al. (1989) Semi-automated radiotherapy treatment planning with a mathematical model to satisfy treatment goals. Int J Radiat Oncol Biol Phys 16(1):271–276

    PubMed  CAS  Google Scholar 

  7. Morrill SM, Lane RG et al. (1991) Treatment planning optimization using constrained simulated annealing. Phys Med Biol 36(10):1341–1361

    Article  PubMed  CAS  Google Scholar 

  8. Lyman JT (1985) Complication probability as assessed from dose-volume histograms. Radiat Res Suppl 8(9):S13–S19

    Article  PubMed  CAS  Google Scholar 

  9. Lyman JT, Wolbarst AB (1987) Optimization of radiation therapy, III: A method of assessing complication probabilities from dose-volume histograms. Int J Radiat Oncol Biol Phys 13(1):103–109

    PubMed  CAS  Google Scholar 

  10. Kutcher GJ, Burman C (1989) Calculation of complication probability factors for non-uniform normal tissue irradiation: the effective volumemethod [see comments]. Int J Radiat Oncol Biol Phys 16(6):1623–1630

    PubMed  CAS  Google Scholar 

  11. Lyman JT, Wolbarst AB (1989) Optimization of radiation therapy, IV: A dose-volume histogram reduction algorithm. Int J Radiat Oncol Biol Phys 17(2):433–436

    PubMed  CAS  Google Scholar 

  12. Niemierko A, Goitein M (1991) Calculation of normal tissue complication probability and dose-volume histogram reduction schemes for tissues with a critical element architecture. Radiother Oncol 20(3):166–176

    Article  PubMed  CAS  Google Scholar 

  13. Kallman P, Agren A et al. (1992) Tumour and normal tissue responses to fractionated non-uniform dose delivery. Int J Radiat Biol 62(2):249–262

    PubMed  CAS  Google Scholar 

  14. Lyman JT (1992) Normal tissue complication probabilities: variable dose per fraction. Int J Radiat Oncol Biol Phys 22(2):247–250

    PubMed  CAS  Google Scholar 

  15. Mohan R, Mageras GS et al. (1992) Clinically relevant optimization of 3-D conformal treatments. Med Phys 19(4):933–944

    Article  PubMed  CAS  Google Scholar 

  16. Niemierko A, Urie M et al. (1992) Optimization of 3D radiation therapy with both physical and biological end points and constraints. Int J Radiat Oncol Biol Phys 23(1):99–108

    PubMed  CAS  Google Scholar 

  17. Niemierko A, Goitein M (1993) Implementation of a model for estimating tumor control probability for an inhomogeneously irradiated tumor. Radiother Oncol 29(2):140–147

    Article  PubMed  CAS  Google Scholar 

  18. Niemierko A, Goitein M (1993) Modeling of normal tissue response to radiation: the critical volume model. Int J Radiat Oncol Biol Phys 25(1):135–145

    PubMed  CAS  Google Scholar 

  19. Webb S (1993) The effect on tumour control probability of varying the setting of a multileaf collimator with respect to the planning target volume. Phys Med Biol 38(12):1923–1936

    Article  PubMed  CAS  Google Scholar 

  20. Mohan R, Wang X et al. (1994) The potential and limitations of the inverse radiotherapy technique. Radiother Oncol 32(3):232–248

    Article  PubMed  CAS  Google Scholar 

  21. Wang XH, Mohan R et al. (1995) Optimization of intensity-modulated 3D conformal treatment plans based on biological indices [see comments]. Radiother Oncol 37(2):140–152

    Article  PubMed  CAS  Google Scholar 

  22. Kutcher GJ (1996) Quantitative plan evaluation: TCP/NTCP models. Frontiers Radiat Ther Oncol 29:67–80

    CAS  Google Scholar 

  23. Mohan R, Wang X et al. (1996) Optimization of 3-D conformal radiation treatment plans. Front Radiat Ther Oncol 29:86–103

    PubMed  CAS  Google Scholar 

  24. Niemierko A (1997) Reporting and analyzing dose distributions: a concept of equivalent uniform dose. Med Phys 24(1):103–110

    Article  PubMed  CAS  Google Scholar 

  25. Niemierko A (1998) Radiobiological models of tissue response to radiation in treatment planning systems. Tumori 84(2):140–143

    PubMed  CAS  Google Scholar 

  26. Kutcher G (1990) Quantitative plan evaluation. AAPM Summer School. American Institute of Physics, J Purdy, Woodbury, NY

    Google Scholar 

  27. Wu Q, Mohan R et al. (2002) Optimization of intensity-modulated radiotherapy plans based on the equivalent uniform dose. Int J Radiat Oncol Biol Phys 52(1):224–235

    Article  PubMed  Google Scholar 

  28. Douglas BG, Fowler JF (1976) The effect of multiple small doses of X rays on skin reactions in the mouse and a basic interpretation. Radiat Res 66(2):401–426

    PubMed  CAS  Google Scholar 

  29. Thames HD (1985) An ‘incomplete-repair’ model for survival after fractionated and continuous irradiations. Int J Radiat Biol 47(3):319–339

    CAS  Google Scholar 

  30. Thames HD, Hendry JH (1987) Fractionation in radiotherapy. Taylor & Francis

    Google Scholar 

  31. Hall EJ (1994) Radiobiology for the radiologist. J.B. Lippincott, Philadelphia

    Google Scholar 

  32. Brenner DJ, Hlatky LR et al. (1995) A convenient extension of the linear-quadratic model to include redistribution and reoxygenation. Int J Radiat Oncol Biol Phys 32(2):379–390

    Article  PubMed  CAS  Google Scholar 

  33. Withers HR, Taylor JM et al. (1988) Treatment volume and tissue tolerance. Int J Radiat Oncol Biol Phys 14(4):751–759

    PubMed  CAS  Google Scholar 

  34. Withers HR (1986) Predicting late normal tissue responses. Int J Radiat Oncol Biol Phys 12(4):693–698

    PubMed  CAS  Google Scholar 

  35. Brahme A (1984) Dosimetric precision requirements in radiation therapy. Acta Radiol Oncol 23(5):379–391

    PubMed  CAS  Google Scholar 

  36. Brenner DJ (1993) Dose, volume, and tumor-control predictions in radiotherapy. Int J Radiat Oncol Biol Phys 26(1):171–179

    PubMed  CAS  Google Scholar 

  37. Okunieff P, Morgan D et al. (1995) Radiation dose-response of human tumors. Int J Radiat Oncol Biol Phys 32(4):1227–1237

    Article  PubMed  CAS  Google Scholar 

  38. Terahara A, Niemierko A et al. (1999) Analysis of the relationship between tumor dose inhomogeneity and local control in patients with skull base chordoma. Int J RadiatOncol Biol Phys 45(2):351–358

    Article  CAS  Google Scholar 

  39. Goitein M (1985) Calculation of the uncertainty in the dose delivered during radiation therapy. Med Phys 12(5):608–612

    Article  PubMed  CAS  Google Scholar 

  40. Zagars GK, Schultheiss TE et al. (1987) Inter-tumor heterogeneity and radiation dose-control curves. Radiother Oncol 8(4):353–361

    PubMed  CAS  Google Scholar 

  41. Graffman S, Groth T et al. (1975) Cell kinetic approach to optimising dose distribution in radiation therapy. Acta Radiol Ther Phys Biol 14(1):54–62

    PubMed  CAS  Google Scholar 

  42. Fisher ER, Fisher B (1969) Effects of X-irradiation on parameters of tumor growth, histology, and ultrastructure. Cancer 24(1):39–55

    PubMed  CAS  Google Scholar 

  43. Jackson A, Kutcher GJ et al. (1993) Probability of radiation-induced complications for normal tissues with parallel architecture subject to non-uniform irradiation. Med Phys 20(3):613–625

    Article  PubMed  CAS  Google Scholar 

  44. Stavreva N, Niemierko A et al. (2001) Modelling the dose-volume response of the spinal cord, based on the idea of damage to contiguous functional subunits. Int J Radiat Biol 77(6):695–702

    Article  PubMed  CAS  Google Scholar 

  45. Schultheiss TE, Orton CG et al. (1983) Models in radiotherapy: volume effects. Med Phys 10(4):410–415

    Article  PubMed  CAS  Google Scholar 

  46. Jackson A, Ten Haken RK et al. (1995) Analysis of clinical complication data for radiation hepatitis using a parallel architecture model. Int J Radiat Oncol Biol Phys 31(4):883–891

    Article  PubMed  CAS  Google Scholar 

  47. Hartford AC, Niemierko A et al. (1996) Conformal irradiation of the prostate: estimating long-term rectal bleeding risk using dose-volume histograms. Int J Radiat Oncol Biol Phys 36(3):721–730

    Article  PubMed  CAS  Google Scholar 

  48. Herbert ED (ed) (1993) Quality assessment and improvement of dose-responsemodels: some effects of study weaknesses on study findings. “c’est magnifique?” A report of Task Group 1 of the AAPM Biological Effects Committee. AAPM Report No. 43, Med Phys Pub, Madison

    Google Scholar 

  49. Lindsey JK (1997) Applying generalized linear models. Springer, Berlin Heidelberg New York

    Google Scholar 

  50. Burman C, Kutcher GJ et al. (1991) Fitting of normal tissue tolerance data to an analytic function. Int J Radiat Oncol Biol Phys 21(1):123–135

    PubMed  CAS  Google Scholar 

  51. Emami B, Lyman J et al. (1991) Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 21(1):109–122

    PubMed  CAS  Google Scholar 

  52. Mohan R, Niemierko A (2002). Intensity modulated radiation therapy. ASTRO Syllabus, New Orleans

    Google Scholar 

  53. Kutcher GJ et al. (1991) Histogram reduction method for calculating complication probabilities for three-dimensional treatment planning evaluations. Int J Radiat Oncol Biol, Phys 21(1):137–146

    CAS  Google Scholar 

  54. Brahme A (1996) Recent developments in radiation therapy planning and treatment optimization. Australas Phys Eng Sci Med 19(2):53–66

    PubMed  CAS  Google Scholar 

  55. Barendsen GW (1982) Dose fractionation, dose rate and isoeffect relationships for normal tissue responses. Int J Radiat Oncol Biol Phys 8(11):1981–1997

    PubMed  CAS  Google Scholar 

  56. Niemierko A (1999) A generalized concept of Equivalent Uniform Dose. Proceedings of the 41th AAPM Annual Meeting, Nashville, Tennessee. Med Phys 26(6):1100

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Niemierko, A. (2006). Biological Optimization. In: Bortfeld, T., Schmidt-Ullrich, R., De Neve, W., Wazer, D.E. (eds) Image-Guided IMRT. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-30356-1_16

Download citation

  • DOI: https://doi.org/10.1007/3-540-30356-1_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20511-1

  • Online ISBN: 978-3-540-30356-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics