Skip to main content

Rationale of Intensity Modulated Radiation Therapy: A Clinician’s Point of View

  • Chapter
Image-Guided IMRT

1.8 Conclusion

Intensity-modulated photon beams can be used to obtain homogeneous concave dose distributions. They allow the creation of intentionally non-homogeneous dose distributions for the prescription of multiple dose levels to be delivered during the same fraction. Dose gradients can be delivered with controlled steepness and location. Unwanted dosimetrical effects of loss of electron equilibrium near interfaces between lower and higher density tissues can be counteracted by IMRT but the appropriate planning technology is not generally available yet. Simple and straightforward is the use of intensity-modulated beams for missing tissue compensation. Dose distributions can be generated to match brachytherapy or electron beam plans. Mixed intensity and energy modulated electron-photon beams with steep dose-fall off and sharp depth-independent penumbra can be created.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brahme A, Roos JE, Lax I (1982) Solution of an integral equation encountered in rotation therapy. Phys Med Biol 27:1221–1229

    Article  PubMed  CAS  Google Scholar 

  2. Lax I, Brahme A (1982) Rotation therapy using a novel high-gradient filter. Radiology 145:473–478

    PubMed  CAS  Google Scholar 

  3. Eklof A, Ahnesjo A, Brahme A (1990) Photon beam energy deposition kernels for inverse radiotherapy planning. Acta Oncol 29:447–454

    PubMed  CAS  Google Scholar 

  4. Carol M, Grant WH III, Pavord D, Eddy P, Targovnik HS, Butler B, Woo S, Figura J, Onufrey V, Grossman R, Selkar R (1996) Initial clinical experience with the Peacock intensity modulation of a 3-D conformal radiation therapy system. Stereotact Funct Neurosurg 66:30–34

    PubMed  CAS  Google Scholar 

  5. Mohan R, Wu Q, Manning M, Schmidt-Ullrich R (2000) Radiobiological considerations in the design of fractionation strategies for intensity-modulated radiation therapy of head and neck cancers. Int J Radiat Oncol Biol Phys 46:619–630

    Article  PubMed  CAS  Google Scholar 

  6. Zelefsky MJ, Fuks Z, Hunt M, Yamada Y, Marion C, Ling CC, Amols H, Venkatraman ES, Leibel SA (2002) High-dose intensity modulated radiation therapy for prostate cancer: early toxicity and biochemical outcome in 772 patients. Int J Radiat Oncol Biol Phys 53:1111–1116

    Article  PubMed  Google Scholar 

  7. Claus F, Boterberg T, Ost P, De Neve W (2002) Short term toxicity profile for 32 sinonasal cancer patients treated with IMRT. Can we avoid dry eye syndrome? Radiother Oncol 64:205–208

    Article  PubMed  Google Scholar 

  8. Gregoire V (2002) Target-volume selection and delineation in the cervico-maxillo-facial region: beyond the concepts of the ICRU. Cancer Radiother 6(1):29s–31s

    PubMed  Google Scholar 

  9. Ling CC, Humm J, Larson S, Amols H, Fuks Z, Leibel S, Koutcher JA (2000) Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality. Int J Radiat Oncol Biol Phys 47:551–560

    Article  PubMed  CAS  Google Scholar 

  10. Van de Wiele C, Lahorte C, Oyen W, Boerman O, Goethals I, Slegers G, Dierckx RA (2003) Nuclear medicine imaging to predict response to radiotherapy: a review. Int J Radiat Oncol Biol Phys 55:5–15

    Article  PubMed  Google Scholar 

  11. Chao KS, Bosch WR, Mutic S, Lewis JS, Dehdashti F, Mintun MA, Dempsey JF, Perez CA, Purdy JA, Welch MJ (2001) A novel approach to overcome hypoxic tumor resistance: Cu-ATSM-guided intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys 49:1171–1182

    Article  PubMed  CAS  Google Scholar 

  12. Tate DJ, Adler JR Jr, Chang SD, Marquez S, Eulau SM, Fee WE, Pinto H, Goffinet DR (1999) Stereotactic radiosurgical boost following radiotherapy in primary nasopharyngeal carcinoma: impact on local control. Int J Radiat Oncol Biol Phys 45:915–921

    Article  PubMed  CAS  Google Scholar 

  13. DeNittis AS, Liu L, Rosenthal DI, Machtay M (2002) Nasopharyngeal carcinoma treated with external radiotherapy, brachytherapy, and concurrent/adjuvant chemotherapy. Am J Clin Oncol 25:93–95

    Article  PubMed  Google Scholar 

  14. Rudoltz MS, Perkins RS, Luthmann RW, Fracke TD, Green TM, Moye L, Wludyka P, Choi YK, Ackerman SN (1999) High-dose-rate brachytherapy for primary carcinomas of the oral cavity and oropharynx. Laryngoscope 109:1967–1973

    Article  PubMed  CAS  Google Scholar 

  15. Martens C, Reynaert N, de Wagter C, Nilsson P, Coghe M, Palmans H, Thierens H, De Neve W (2002) Underdosage of the upper-airway mucosa for small fields as used in intensity-modulated radiation therapy: a comparison between radiochromic film measurements, Monte Carlo simulations, and collapsed cone convolution calculations. Med Phys 29:1528–1535

    Article  PubMed  CAS  Google Scholar 

  16. Dirkx ML, Heijmen BJ, Korevaar GA, van Os MJ, Stroom JC, Koper PC, Levendag PC (1997) Field margin reduction using intensity-modulated X-ray beams formed with a multileaf collimator. Int J Radiat Oncol Biol Phys 38:1123–1129

    Article  PubMed  CAS  Google Scholar 

  17. Miller RC, Bonner JA, Kline RW(1998) Impact of beam energy and field margin on penumbra at lung tumor-lung parenchyma interfaces. Int J Radiat Oncol Biol Phys 41:707–713

    Article  PubMed  CAS  Google Scholar 

  18. Mohan R, Wu Q, Wang X, Stein J (1996) Intensity modulation optimization, lateral transport of radiation, and margins. Med Phys 23:2011–2021

    Article  PubMed  CAS  Google Scholar 

  19. Brugmans MJ, van der Horst A, Lebesque JV, Mijnheer BJ (1999) Beam intensity modulation to reduce the field sizes for conformal irradiation of lung tumors: a dosimetric study. Int J Radiat Oncol Biol Phys 43:893–904

    Article  PubMed  CAS  Google Scholar 

  20. Sharpe MB, Miller BM, Wong JW (2000) Compensation of X-ray beam penumbra in conformal radiotherapy. Med Phys 27:1739–1745

    Article  PubMed  CAS  Google Scholar 

  21. Nutting CM, Normile PS, Bedford JL, Harrington KJ, Webb S (2003) A systematic study of techniques for elective cervical nodal irradiation with anterior or opposed anterior and posterior beams. Radiother Oncol 69:43–51

    Article  PubMed  Google Scholar 

  22. Evans PM, Hansen VN, Mayles WP, Swindell W, Torr M, Yarnold JR (1995) Design of compensators for breast radiotherapy using electronic portal imaging. Radiother Oncol 37:43–54

    Article  PubMed  CAS  Google Scholar 

  23. Kestin LL, Sharpe MB, Frazier RC, Vicini FA, Yan D, Matter RC, Martinez AA, Wong JW (2000) Intensity modulation to improve dose uniformity with tangential breast radiotherapy: initial clinical experience. Int J Radiat Oncol Biol Phys 48:1559–1568

    Article  PubMed  CAS  Google Scholar 

  24. Korevaar EW, Heijmen BJ, Woudstra E, Huizenga H, Brahme A (1999) Mixing intensity modulated electron and photon beams: combining a steep dose fall-off at depth with sharp and depth-independent penumbras and flat beam profiles. Phys Med Biol 44:2171–2181

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

De Neve, W. (2006). Rationale of Intensity Modulated Radiation Therapy: A Clinician’s Point of View. In: Bortfeld, T., Schmidt-Ullrich, R., De Neve, W., Wazer, D.E. (eds) Image-Guided IMRT. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-30356-1_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-30356-1_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20511-1

  • Online ISBN: 978-3-540-30356-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics