Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 172))

Abstract

Heat shock transcription factors, as well as heat shock proteins, are involved in different steps in differentiation and development, in addition to their role in adaptation to stress. This has already been demonstrated in the case of the single heat shock factor present in Drosophila. Over the last 6 years, similar observations have accumulated from the progressive inactivation of the different hsf genes in mammals, the use of double-null animals, and the slow characterization of their complex phenotypes. Although these studies are not yet complete, the data so far can be used to draw some conclusions. All hsf genes contribute to development in mammals and to normal functions at the adult stage, by controlling the expression of Hsp and non-Hsp genes. Reproduction, the immune response and aging are the processes that are the most deeply affected. An attractive hypothesis would be that these new functions have been recruited during evolution in order to coordinate these processes: HSFsmay occupy a central place in the trade off that organisms make between reproduction and maintenance, in response to the variations in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alastalo TP, Lönnstrom M, Leppä S, Kaarniranta K, Pelto-Huikko M, Sistonen L, Parvinen M (1998) Stage-specific expression and cellular localization of the heat shock factor 2 isoforms in the rat seminiferous epithelium. Exp Cell Res 240:16–27

    Article  PubMed  CAS  Google Scholar 

  • Alastalo TP, Hellesuo M, Sandqvist A, Hietakangas V, Kallio M, Sistonen L (2003) Formation of nuclear stress granules involves HSF2 and coincides with the nucleolar localization of Hsp70. J Cell Sci 116:3557–3570

    Article  PubMed  CAS  Google Scholar 

  • Bensaude O, Babinet C, Morange M, Jacob F (1983) Heat shock proteins, first major products of zygotic gene activity in mouse embryo. Nature 305:331–333

    Article  PubMed  CAS  Google Scholar 

  • Bu L, Jin Y, Shi Y, Chu R, Ban A, Eiberg H, Andres L, Jiang H, Zheng G, Qian M, Cui B, Xia Y, Liu J, Hu L, Zhao G, Hayden MR, Kong X (2002) Mutant DNA-binding domain of HSF4 is associated with autosomal dominant lamellar and Marner cataract. Nat Genet 31:276–278

    Article  PubMed  CAS  Google Scholar 

  • Cahill CM, Waterman WR, Xie Y, Auron PE, Calderwood SK (1996) Transcriptional repression of the prointerleukin 1β gene by heat shock factor 1. J Biol Chem 271:24874–24879

    PubMed  CAS  Google Scholar 

  • Christians E, Davis AA, Thomas SD, Benjamin IJ (2000) Maternal effect of Hsf1 on reproductive success. Nature 407:693–694

    PubMed  CAS  Google Scholar 

  • Dix DJ, Allen JW, Collins BW, Mori C, Nakamura N, Poorman-Allen P, Goulding EH, Eddy EM (1996) Targeted gene disruption of Hsp70-2 results in failedmeiosis, germcell apoptosis, and male infertility. Proc Natl Acad Sci U S A 93:3264–3268

    Article  PubMed  CAS  Google Scholar 

  • Eriksson M, Jokinen E, Sistonen L, Leppä S (2000) Heat shock factor 2 is activated during mouse heart development. Int J Dev Biol 44:471–477

    PubMed  CAS  Google Scholar 

  • Fiorenza MT, Farkas T, Dissing M, Kolding D, Zimarino V (1995) Complex expression of murine heat shock transcription factors. Nucleic Acids Res 23:467–474

    PubMed  CAS  Google Scholar 

  • Fujimoto M, Izu H, Seki K, Fukuda K, Nishida T, Yamada SI, Kato K, Yonemura S, Inouye S, Nakai A (2004) HSF4 is required for normal cell growth and differentiation during mouse lens development. EMBO J 23:4297–4306

    Article  PubMed  CAS  Google Scholar 

  • Goodson ML, Park-Sarge OK, Sarge KD (1995) Tissue-dependent expression of heat shock factor 2 isoforms with distinct transcriptional activities. Mol Cell Biol 15:5288–5293

    PubMed  CAS  Google Scholar 

  • Goodson ML, Hong Y, Rogers R, Matunis MJ, Park-Sarge OK, Sarge KD (2001) Sumo-1 modification regulates the DNA binding activity of heat shock transcription factor 2, a promyelocytic leukemia nuclear body associated transcription factor. J Biol Chem 276:8513–18518

    Article  Google Scholar 

  • He H, Soncin F, Grammatikakis N, Li Y, Siganou A, Gong J, Brown SA, Kingston RE, Calderwood SK (2003) Elevated expression of heat shock factor (HSF) 2A stimulates HSF1-induced transcription during stress. J Biol Chem 278: 35465–35475

    PubMed  CAS  Google Scholar 

  • Hilgarth RS, Murphy LA, O’xConnor CM, Clark JA, Park-Sarge OK, Sarge KD (2004) Identification of Xenopus heat shock transcription factor-2: conserved role of sumoylation in regulating deoxyribonucleic acid-binding activity of heat shock transcription factor-2 proteins. Cell Stress Chaperones 9:214–220

    Article  PubMed  CAS  Google Scholar 

  • Hong Y, Sarge KD (1999) Regulation of protein phosphatase 2A activity by heat shock transcription factor 2. J Biol Chem 274:12967–12970

    PubMed  CAS  Google Scholar 

  • Hsu AL, Murphy CT, Kenyon C (2003) Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science 300:1142–1145

    Article  PubMed  CAS  Google Scholar 

  • Inouye S, Katsuki K, Izu H, Fujimoto M, Sugahara K, Yamada S, Shinkai Y, Oka Y, Katoh Y, Nakai A (2003) Activation of heat shock genes is not necessary for protection by heat shock transcription factor 1 against cell death due to a single exposure to high temperatures. Mol Cell Biol 23:5882–5895

    Article  PubMed  CAS  Google Scholar 

  • Inouye S, Izu H, Takaki E, Suzuki H, Shirai M, Yokota Y, Ichikawa H, Fujimoto M, Nakai A (2004) Impaired IgG production in mice deficient for heat shock transcription factor 1. J Biol Chem 279:38701–38709

    PubMed  CAS  Google Scholar 

  • Ireland RC, Berger EM (1982) Synthesis of low molecular weight heat shock peptides stimulated by ecdysterone in a cultured Drosophila cell line. Proc Natl Acad Sci U S A 79:855–859

    PubMed  CAS  Google Scholar 

  • Izu H, Inouye S, Fujimoto M, Shiraishi K, Naito K, Nakai A (2004) Heat shock transcription factor 1 is involved in quality-control mechanisms in male germ cells. Biol Reprod 70:18–24

    PubMed  CAS  Google Scholar 

  • Jedlicka P, Mortin MA, Wu C (1997) Multiple functions of Drosophila heat shock transcription factor in vivo. The EMBO J 16:2452–2462

    CAS  Google Scholar 

  • Kallio M, Chang Y, Manuel M, Alastalo TP, Rallu M, Gitton Y, Pirkkala L, Loones MT, Paslaru L, Larney S, Hiard S, Morange M, Sistonen L, Mezger V (2002) Brain abnormalities, defective meiotic chromosome synapsis and female subfertility in HSF2 null mice. EMBO J 21:2591–2601

    Article  PubMed  CAS  Google Scholar 

  • Katsuki K, Fujimoto M, Zhang XY, Izu H, Takaki E, Tanizawa Y, Inouye S, Nakai A (2004) Feeding induces expression of heat shock proteins that reduce oxidative stress. FEBS Lett 571:187–191

    Article  PubMed  CAS  Google Scholar 

  • Kroeger PE, Morimoto RI (1994) Selection of new HSF1 and HSF2 DNA-binding sites reveals difference in trimer cooperativity. Mol Cell Biol 14:7592–7603

    PubMed  CAS  Google Scholar 

  • Le Goff P, Le Drean Y, Le Peron C, Le Jossic-Corcos C, Ainouche A, Michel D (2004) Intracellular trafficking of heat shock factor 2. Exp Cell Res 294:480–493

    PubMed  Google Scholar 

  • Leppä S, Pirkkala L, Saarento H, Sarge KD, Sistonen L (1997a) Overexpression of HSF2-β inhibits hemin-induced heat shock gene expression and erythroid differentiation in K562 cells. J Biol Chem 272: 15293–15298

    PubMed  Google Scholar 

  • Leppä S, Pirkkala L, Chow SC, Eriksson JE, Sistonen L (1997b) Thioredoxin is transcriptionally induced upon activation of heat shock factor 2. J Biol Chem 272:30400–30404

    PubMed  Google Scholar 

  • Manuel M, Rallu M, Loones MT, Zimarino V, Mezger V, Morange M (2002) Determination of the consensus binding sequence for the purified embryonic heat shock factor 2. Eur J Biochem 269:2527–2537

    Article  PubMed  CAS  Google Scholar 

  • Mathew A, Mathur SK, Morimoto RI (1998) Heat shock response and protein degradation: regulation of HSF2 by the ubiquitin-proteasome pathway. Mol Cell Biol 18:5091–5098

    PubMed  CAS  Google Scholar 

  • Mathew A, Mathur SK, Jolly C, Fox SG, Kim S, Morimoto RI (2001) Stress-specific activation and repression of heat shock factors 1 and 2. Mol Cell Biol 21:7163–7171

    Article  PubMed  CAS  Google Scholar 

  • McMillan DR, Xiao X, Shao L, Graves K, Benjamin IJ (1998) Targeted disruptionof heat shock transcription factor 1 abolishes thermotolerance and protection against heat-inducible apoptosis. J Biol Chem 273:7523–7528

    Article  PubMed  CAS  Google Scholar 

  • McMillan DR, Christians E, Forster M, Xiao X, Connell P, Plumier JC, Zuo X, Richardson J, Morgan S, Benjamin IJ (2002) Heat shock transcription factor 2 is not essential for embryonic development, fertility, or adult cognitive and psychomotor function inmice. Mol Cell Biol 22:8005–8014

    Article  PubMed  CAS  Google Scholar 

  • Min JN, Zhang Y, Moskophidis D, Mivechi NF (2004) Unique contribution of heat shock transcription factor 4 in ocular lens development and fiber cell differentiation. Genesis 40:205–217

    Article  PubMed  CAS  Google Scholar 

  • Nakai A, Tanabe M, Kawazoe Y, Inazawa J, Morimoto RI, Nagata K (1997) HSF4, a new member of the human heat shock factor family which lacksproperties of a transcriptional activator. Mol Cell Biol 17:469–481

    PubMed  CAS  Google Scholar 

  • Nakai A, Suzuki M, Tanabe M (2000) Arrest of spermatogenesis in mice expressing an active heat shock transcription factor 1. EMBO J 19:1545–1554

    Article  PubMed  CAS  Google Scholar 

  • Nakai A, Ishikawa T (2001) Cell cycle transition under stress conditions controlled by vertebrate heat shock factors. EMBO J 20:2885–2895

    Article  PubMed  CAS  Google Scholar 

  • Paslaru L, Morange M, Mezger V (2003) Phenotypic characterization of mouse embryonic fibroblasts lacking heat shock factor 2. J Cell Mol Med 7:425–435

    PubMed  CAS  Google Scholar 

  • Pirkkala L, Alastalo TP, Zuo X, Benjamin IJ, Sistonen L (2000) Disruption of heat shock factor 1 reveals an essential role in the ubiquitin proteolytic pathway. Mol Cell Biol 20:2670–2675

    Article  PubMed  CAS  Google Scholar 

  • Pirkkala L, Nykänen P, Sistonen L (2001) Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J 15:1118–1131

    Article  PubMed  CAS  Google Scholar 

  • Queitsch C, Sangster TA, Lindquist S (2002) Hsp90 as a capacitor of phenotypic variation. Nature 417: 618–624

    Article  PubMed  CAS  Google Scholar 

  • Rallu M, Loones MT, Lallemand Y, Morimoto RI, Morange M, Mezger V (1997) Function and regulation of heat shock factor 2 during mouse embryogenesis. Proc Natl Acad Sci U S A 94:2392–2397

    Article  PubMed  CAS  Google Scholar 

  • Roccisana JL, Kawanabe N, Kajiya H, Koide M, Roodman GD, Reddy SV (2004) Functional role for heat shock factors in the transcriptional regulation of human RANK ligand gene expression in stromal/osteoblast cells. J Biol Chem 279:10500–10507

    PubMed  CAS  Google Scholar 

  • Rutherford SL, Lindquist (1998) HSP90 as a capacitor for morphological evolution. Nature 396:336–342

    Article  PubMed  CAS  Google Scholar 

  • Sarge KD, Park-Sarge OK, Kirby JD, Mayo KE, Morimoto RI (1994) Expression of heat shock factor 2 inmouse testis: potential role as a regulator of heat shock gene expression during spermatogenesis. Biol Reprod 50:1334–1343

    Article  PubMed  CAS  Google Scholar 

  • Shamovsky I, Gershon D (2004) Novel regulatory factors of HSF-1 activation: facts and perspectives regarding their involvement in the age-associated attenuation of the heat shock response. Mech Ageing Dev 125:767–775

    Article  PubMed  CAS  Google Scholar 

  • Shinka T, Sato Y, Chen G, Naroda T, Kinoshita K, Unemi Y, Tsuji K, Toida K, Iwamoto T, Nakahori Y (2004) Molecular characterization of heat shock-like factor encoded on the human Y chromosome, and implications for male infertility. Biol Reprod 71:297–306

    Article  PubMed  CAS  Google Scholar 

  • Sistonen L, Sarge KD, Phillips B, Abravaya K, Morimoto RI (1992) Activation of heat shock factor 2 during hemin-induced differentiation of human erythroleukemia cells. Mol Cell Biol 12:4104–4111

    PubMed  CAS  Google Scholar 

  • Sistonen L, Sarge KD, Morimoto RI (1994) Human heat shock factors 1 and 2 are differentially activated and can synergistically induce Hsp70 gene transcription. Mol Cell Biol 14:2087–2099

    PubMed  CAS  Google Scholar 

  • Somansundaram T, Bhat SP (2000) Canonical heat shock element in the αB-crystallin gene shows tissue-specific and developmentally controlled interactionswith heat shock factor. J Biol Chem 275: 17154–17159

    Google Scholar 

  • Somansundaram T, Bhat SP (2004) Developmentally dictated expression of heat shock factors: exclusive expression of HSF4 in the postnatal lens and its specific interaction with αB-crystallin heat shock promoter. J Biol Chem 279:44497–44503

    Google Scholar 

  • Tanabe M, Kawazoe Y, Takeda S, Morimoto RI, Nagata K, Nakai A (1998) Disruption of the HSF3 gene results in the severe reduction of heat shock gene expression and loss of thermotolerance. EMBO J 17:1750–1758

    Article  PubMed  CAS  Google Scholar 

  • Tessari A, Salata E, Ferlin A, Bartoloni L, Slongo ML, Foresta C (2004) Characterization of HSFY, a novel AZFb gene on the Y chromosome with a possible role in human spermatogenesis. Mol Hum Reprod 10:253–258

    Article  PubMed  CAS  Google Scholar 

  • Trinklein ND, Chen WC, Kingston RE, Myers RM (2004a) Transcriptional regulation and binding of heat shock factor 1 and heat shock factor 2 to 32 human heat shock genes during thermal stress and differentiation. Cell Stress Chaperones 9:21–28

    Article  PubMed  CAS  Google Scholar 

  • Trinklein ND, Murray JI, Hartman SJ, Botstein D, Myers RM (2004b) The role of heat shock transcription factor 1 in the genome-wide regulation of the mammalian heat shock response. Mol Biol Cell 15:1254–1261

    PubMed  CAS  Google Scholar 

  • Wang G, Zhang J, Moskophidis D, Mivechi NF (2003) Targeted disruption of the heat shock transcription factor (hsf)-2 gene results in increased mbryonic lethality, neuronal defects, and reduced spermatogenesis. Genesis 36:48–61

    Article  PubMed  CAS  Google Scholar 

  • Wang G, Ying Z, Jin X, Tu N, Zhang Y, Phillips M, Moskophidis D, Mivechi NF (2004) Essential requirement for both hsf1 and hsf2 transcriptional activity in spermatogenesis and male fertility. Genesis 38:66–80

    Article  PubMed  Google Scholar 

  • Wirth D, Christians E, Li X, Benjamin IJ, Gustin P (2003) Use of Hsf1-/- mice reveals an essential role for HSF1 to protect lung against cadmium-induced injury. Toxicol Appl Pharmacol 192:12–20

    Article  PubMed  CAS  Google Scholar 

  • Xiao X, Zuo X, Davis AA, Mcmillan DR, Curry BB, Richardson JA, Benjamin IJ (1999) HSF1 is required for extra-embryonic development, postnatal growth and protection during inflammatory responses in mice. EMBO J 18: 5943–5952

    PubMed  CAS  Google Scholar 

  • Xie Y, Chen C, Stevenson MA, Auron PE, Calderwood SK (2002) Heat shock factor 1 represses transcription of the IL-1β gene through physical interaction with the nuclear factor of interleukin 6. J Biol Chem 277: 11802–11810

    PubMed  CAS  Google Scholar 

  • Xing H, Wilkerson DC, Mayhew CN, Lubert EJ, Skaggs HS, Goodson ML, Hong Y, Park-Sarge OK, Sarge KD (2005) Mechanism of Hsp70i gene bookmarking. Science 307:421–423

    Article  PubMed  CAS  Google Scholar 

  • Yan LJ, Christians ES, Liu L, Xiao X, Sohal RS, Benjamin IJ (2002) Mouse heat shock transcription factor 1 deficiency alters cardiac redox homeostasis and increases mitochondrial oxidative damage. EMBO J 21: 5164–5172

    Article  PubMed  CAS  Google Scholar 

  • Yan LJ, Rajasekaran NS, Sathyanarayanan S, Benjamin IJ (2005) Mouse HSF1 disruption perturbs redox state and increases mitochondrial oxidative stress in kidney. Antioxid Redox Signal 7:465–471

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Frejtag W, Dai R, Mivechi NF (2001) Heat shock factor-4 (HSF-4a) is a repressor of HSF-1 mediated transcription. J Cell Biochem 82:692–703

    Article  PubMed  CAS  Google Scholar 

  • Zheng H, Li Z (2004) Cross-presentation of cell-associated antigens to MHC class I molecule is regulated by a major transcription factor for heat shock proteins. J Immunol 173:5929–5933

    PubMed  CAS  Google Scholar 

  • Zou Y, Zhu W, Sakamoto M, Qin Y, Akazawa H, Toko H, Mizukami M, Takeda N, Minamino T, Takano H, Nagai T, Nakai A, Komuro I (2003) Heat shock transcription factor 1 protects cardiomyocytes from ischemia/reperfusion injury. Circulation 108:3024–3030

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Morange, M. (2006). HSFs in Development. In: Starke, K., Gaestel, M. (eds) Molecular Chaperones in Health and Disease. Handbook of Experimental Pharmacology, vol 172. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29717-0_7

Download citation

Publish with us

Policies and ethics