Skip to main content

What Modern Mathematical Physics Is Supposed to Be

  • Chapter
  • 1840 Accesses

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. B. Nagel. The discussion concerning the Nobel Prize for Max Planck. In: Science, Technology, and Society in the Time of Alfred Nobel. Oxford: Pergamon Press, 1982.

    Google Scholar 

  2. P.M. Morse, H. Feshbach. Methods of Theoretical Physics. New York: McGraw-Hill, 1953.

    MATH  Google Scholar 

  3. R. Courant, D. Hilbert. Methods of Mathematical Physics. New York: Interscience, 1953.

    Google Scholar 

  4. S. L. Sobolev. Some Applications of Functional Analysis in Mathematical Physics. Leningrad State University, 1950 (Russian).

    Google Scholar 

  5. P. Dirac. Quantized singularities in the electromagnetic field. Proc. Roy. Soc. London, 1931, A133, 60–72.

    Google Scholar 

  6. C.N. Yang. Selected Papers, 1945–1980, with Commentary. San Francisco: Freeman & Co., 1983.

    Google Scholar 

  7. C.N. Yang, R. Mills. Conservation of isotopic spin and isotopic gauge invariance. Phys. Rev., 1954, 96, 191–195.

    Article  MathSciNet  Google Scholar 

  8. V. Fock. L’équation d’onde de Dirac et la géométrie de Riemann. J. Phys. Radium, 1929, 70, 392–405.

    Google Scholar 

  9. H. Weyl. Electron and gravitation. Z. Phys., 1929, 56, 330–352.

    Article  MATH  Google Scholar 

  10. O. Klein. On the theory of charged fields. Surveys High Energy Phys., 1986, 5, p. 269.

    Google Scholar 

  11. R. Feynman. Quantum theory of gravitation. Acta Phys. Pol., 1963, 24, p. 697.

    MathSciNet  Google Scholar 

  12. B. DeWitt. Quantum theory of gravity. II. The manifestly covariant theory. Phys Rev., 1967, 162, 1195–1239.

    Article  MATH  Google Scholar 

  13. A. Lichnerowitz. Théorie globale des connections et des groupes d’holonomie. Rome: Cremonese, 1955.

    Google Scholar 

  14. L. Faddeev, V. Popov. Feynman diagrams for the Yang-Mills fields. Phys. Lett., 1967, B25, p. 30.

    Google Scholar 

  15. V. Popov, L. Faddeev. Perturbation theory for gauge-invariant fields. Preprint, Institute for Theoretical Physics, No. 67–36, Kiev, 1967 (Russian).

    Google Scholar 

  16. G. ’t Hooft. Renormalizable Lagrangians for massive Yang-Mills fields. Nucl Phys. B, 1971, 35(1), 167–188.

    Article  Google Scholar 

  17. S. Coleman. Secret symmetries: an introduction to spontaneous symmetry break-down and gauge fields. In: Laws of Hadronic Matter. International School of Subnuclear Physics (Erice, 1973). New York: Academic Press, 1975, 138–223 (Subnuclear Ser., 11).

    Google Scholar 

  18. G. ’t Hooft. When was asymptotic freedom discovered? Rehabilitation of quantum field theory. Preprint, HEP-TH, 98-08-154.

    Google Scholar 

  19. D. Gross. Twenty years of asymptotic freedom. Preprint, HEP-TH, 98-09-060.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Faddeev, L.D. (2006). What Modern Mathematical Physics Is Supposed to Be. In: Bolibruch, †.A.A., et al. Mathematical Events of the Twentieth Century. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-29462-7_4

Download citation

Publish with us

Policies and ethics