Skip to main content

Root Exudates as Determinant of Rhizospheric Microbial Biodiversity

  • Chapter
Microbial Activity in the Rhizoshere

Part of the book series: Soil Biology ((SOILBIOL,volume 7))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmad I, Malloch D (1995) Interaction of soil microflora with the bioherbicide phosphinothricin. Agr Ecosyst Environ 54:165–174

    Article  CAS  Google Scholar 

  2. Ahrenholtz I, Harms K, de Vries J, Wackernagel W (2000) Increased killing of Bacillus subtilis on hair roots of transgenic T4-lysozyme-producing potatoes. Appl Environ Microbiol 66:1862–1865

    Article  CAS  PubMed  Google Scholar 

  3. Araujo MAV, Mendonca-Hagler LC, Hagler AN, van Elsas JD (1994) Survival of genetically modified Pseudomonas fluorescens introduced into subtropical soil microcosms. FEMS Microbiol Ecol 13:205–216

    Google Scholar 

  4. Azaizeh HA, Marschner H, Romheld V, Wittenmayer L (1995) Effects of a vesicular arbuscular mycorrhizal fungus and other soil microorganisms on growth, mineral nutrient acquisition and root exudation of soil grown maize plants. Mycorrhiza 5:321–327

    Google Scholar 

  5. Azcon R, Ocampo JA (1984) Effect of root exudation on VA mycorrhizal infection at early stages of plant growth. Plant Soil 82:133–138

    Google Scholar 

  6. Bachmann G, Kinzel H (1992) Physiological and ecological aspects of the interactions between plant roots and rhizosphere soil. Soil Biol Biochem 24:543–552

    Article  Google Scholar 

  7. Bansal M, Mukerji KG (1994) Positive correlation between VAM induced changes in root exudation and mycorrhizosphere mycoflora. Mycorrhiza 5:39–44

    Google Scholar 

  8. Becard G, Piche Y (1989) New aspects on the acquisition of biotrophic status by a vesicular-arbuscular mycorrhizal fungus, Gigaspora margarita. New Phytol 112:77–83

    Google Scholar 

  9. Becard G, Piche Y (1990) Physiological factors determining vesicular-arbuscular mycorrhizal formation in host and nonhost Ri T-DNA transformed roots. Can J Bot 68:1260–1264

    Google Scholar 

  10. Berg G, Nicotte R, Anette S, Leo E, Angela Z, Korndia S (2002) Plant dependent genotypic and phenotypic diversity of antagonistic rhizobacteria isolated from different verticillium host plants. Appl Environ Microbiol 68:3328–3338

    CAS  PubMed  Google Scholar 

  11. Boeuf-Tremblay V, Plantureux S, Guckert A (1995) Influence of mechanical impedance on root exudation of maize seedlings at two development stages. Plant Soil 172:279–287

    Article  CAS  Google Scholar 

  12. Bolton H, Frederickson JK, Elliott LF (1992) Microbial ecology of the rhizosphere. In: Metting FB (ed) Soil microbial ecology. Marcel Dekker, New York, pp 27–36

    Google Scholar 

  13. Bonfante-Fasolo P (1988) The role of the cell wall as a signal mycorrhizal associations, In: Scannerini S, Bonfante-Fasolo P, Pearson G (eds) Cell to signals in plant, animal and microbial symbiosis. Springer, Berlin Heidelberg New York, pp 219–235

    Google Scholar 

  14. Brimecombe MJ, de Leij FA, Lynch JM (2001) The effect of root exudates on rhizosphere microbial communities. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere. Biochemistry and organic substances at the soil-plant interface. Marcel Dekker, New York, pp 95–140

    Google Scholar 

  15. Carelli M, Gnocchi S, Fancelli S, Mengoni A, Paffetti D, Scotti C, Bazzicalupo M (2000) Genetic diversity and dynamics of Sinorhizobium meliloti populations nodulating different alfalfa cultivars in Italian soils. Appl Environ Microbiol 66:4785–4789

    Article  CAS  PubMed  Google Scholar 

  16. Chantigny MH, Prevost D, Angers DA, Vezina LP, Chalifour FP (1996) Microbial biomass and N transformations in two soils cropped with annual and perennial species. Biol Fert Soils 21:239–244

    Google Scholar 

  17. Christiansen-Weniger C (1996) Endophytic establishment of Azorhizobium caulinodans through auxin-induced tumors of rice (Oryza sativa L.). Biol Fert Soils 21:293–302

    CAS  Google Scholar 

  18. Christensen-Weniger C, Groneman AF, vanVeen JA (1992) Associative N2 fixation and root exudation of organic acids from wheat cultivars of different aluminum tolerance. Plant Soil 139:167–174

    Google Scholar 

  19. Cieslinski G, van Rees KCJ, Huang PM (1997) Low molecular weight organic acids released from roots of durum wheat and flax into sterile nutrient solutions. J Plant Nutr 20:753–764

    CAS  Google Scholar 

  20. Curl EA, Truelove B (1986) The Rhizosphere. Springer-Verlag, New York

    Google Scholar 

  21. Duineveld BM, Rosado A, van Elsas JD, van Veen JA (1998) Analysis of the dynamics of bacterial communities in the rhizosphere of the chrysanthemum via denaturing gradient gel electrophoresis and substrate utilization patterns. Appl Environ Microbiol 64:4950–4957

    CAS  PubMed  Google Scholar 

  22. Duineveld BM, Kowalchuk GA, Keijzer A, van Elsas JD, van Veen JA (2001) Analysis of bacterial communities in the rhizosphere of chrysanthemum via denaturating gradient gel electrophoresis of PCR-amplified 16S rRNA as well as DNA fragments coding for 16S rRNA. Appl Environ Microbiol 67:172–178

    Article  CAS  PubMed  Google Scholar 

  23. Dunfield KE, Germida JJ (2001) Diversity of bacterial communities in the rhizosphere and root interior of field-grown genetically modified Brassica napus. FEMS Microbiol Ecol 38:1–9

    CAS  Google Scholar 

  24. Falchini L, Naumova N, Kuikman PJ, Bloem J, Nannipieri P (2003) CO2 evolution and denaturing gradient gel electrophoresis profiles of bacterial communities in soil following addition of low molecular weight substrates to simulate root exudation. Soil Biol Biochem 36:775–782

    Google Scholar 

  25. Franken P, Gnadinger F (1994) Analysis of parsley arbuscular endomycorrhiza: infection development and mRNA levels of defence-related genes. Mol Plant Microbe Interact 7:612–620

    CAS  Google Scholar 

  26. Fromin N, Achouak W, Thiery JM, Heulin T (2001) The genotypic diversity of Pseudomonas brassicacearum populations isolated from roots of Arabidopsis thaliana: influence of plant genotype. FEMS Microbiol Ecol 37:21–29

    CAS  Google Scholar 

  27. Giovannetti M, Avio L, Sbrana C, Citernesi AS (1993a) Factors affecting appressorium development in the vesicular-arbuscular mycorrhizal fungus Glomus mosseae (Nicol. & Gerd.) Gerd. & Trappe. New Phytol 123:115–122

    Google Scholar 

  28. Giovannetti M, Sbrana C, Avio L, Citernesi AS, Logi C (1993b) Differential hyphal morphogenesis in arbuscular mycorrhizal fungi during preinfection stages. New Phytol 125:587–593

    Google Scholar 

  29. Gomes NCM, Heuer H, Schonfeld J, Costa R, Mendonca-Hagler L, Smalla K (2001) Bacterial diversity of the rhizosphere of maize (Zea mays) grown in tropical soil studied by temperature gradient gel electrophoresis. Plant Soil 232:167–180

    Article  CAS  Google Scholar 

  30. Gorlenko MV, Majorova TN, Kozhevin PA (1997) Disturbances and their influence on substrate utilization patterns in soil microbial communities. In: Insam H, Rangger A (eds) Microbial communities. Springer, Berlin Heidelberg New York, pp 84–93

    Google Scholar 

  31. Grayston SJ, Wang SQ, Campbell CD, Edwards AC (1998) Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol Biochem 30:369–378

    Article  CAS  Google Scholar 

  32. Gupta R, Mukerji KG (2002) Root exudate – biology. In: Mukerji KG et al. (eds) Techniques in mycorrhizal studies. Kluwer Academic, Dordrecht, pp 103–131

    Google Scholar 

  33. Gyamfi S, Ulrike P, Michael S, Angela S (2002) Effect of transgenic glufosinate-tolerant oilseed rape (Brassica napus) and the associated herbicide application on eubacterial and Pseudomonas communities in the rhizosphere. FEMS Microbiol Ecol 41:181–190

    CAS  Google Scholar 

  34. Hadacek F, Gunther FF (2002) Plant root carbohydrates affect growth behaviour of endophytic microfungi. FEMS Microbiol Ecol 41:161–170

    CAS  Google Scholar 

  35. Heuer H, Kroppenstedt RM, Berg G, Smalla K (2002) Effects of T4 lysozyme release from transgenic potato roots on bacterial rhizophere communities are negligible relative to natural factors. Appl Environ Microbiol 68:1325–1335

    Article  CAS  PubMed  Google Scholar 

  36. Jaeger CH, Lindow SE, Miller W, Clark E, Firestone MK (1999) Mapping of sugar and amino acid availability in soil around roots with bacterial sensors of sucrose and tryptophan. Appl Environ Microbiol 65:2685–2690

    CAS  PubMed  Google Scholar 

  37. Kochian LV (1995) Cellular mechanisms of aluminum toxicity and resistance in plants. Ann Rev Plt Physiol Plt Mol Biol 46:237–260

    CAS  Google Scholar 

  38. Kreitz S, Anderson TH (1997) Substrate utilization patterns of extractable and non-extractable bacterial fractions in neutral and acidic beech forest soils. In: Insam H, Rangger A (eds). Microbial communities. Springer, Berlin Heidelberg New York, pp 140–160

    Google Scholar 

  39. Kuzyakov Y, Cheng W (2001) Photosynthesis controls of rhizosphere respiration and organic matter decomposition. Soil Biol Biochem 33:1915–1925

    CAS  Google Scholar 

  40. Laheurte F, Leyval C, Berthelin J (1990) Root exudates of maize, pine and beech seedlings influenced by mycorrhizal and bacterial inoculation. Symbiosis 9:111–116

    Google Scholar 

  41. Latour X, Corberand T, Laguerre G, Allard F, Lemanceau P (1996) The composition of fluorescent pseudomonad population associated with roots as influenced by plant and soil type. Appl Environ Microbiol 62:2449–2456

    CAS  Google Scholar 

  42. Lemanceau P, Corberand T, Gardan L, Labour X, Laguerre G, Boeufgras J, Alabouvette C (1995) Effect of two plant species, flax (Linum usitatissinum L.) and tomato (Lycopersicon esculentum Mill.) on the diversity of soil-borne populations of fluorescent pseudomonads. Appl Environ Microbiol 61:1004–1012

    CAS  Google Scholar 

  43. Lilley AK, Fry JC, Bailey MJ, Day MJ (1996) Comparison of aerobic heterotrophic taxa isolated from four root domains of mature sugar beet (Beta vulgaris). FEMS Microbiol Ecol 21:231–242

    CAS  Google Scholar 

  44. Lottmann J, Berg G (2001) Phenotypic and genotypic characterization of antagonistic bacteria associated with roots of transgenic and non-transgenic potato plants. Microbiol Res 156:75–82

    Article  CAS  PubMed  Google Scholar 

  45. Lugtenberg BJJ, Ekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Ann Rev Phytopathol 39:461–490

    CAS  Google Scholar 

  46. Lukow T, Dunfield PF, Liesack W (2000) Use of the T-RFLP technique to assess and temporal changes in the bacterial community structure within an agricultural soil planted with transgenic and non-transgenic potato plants. FEMS Microbiol Ecol 32:241–247

    CAS  Google Scholar 

  47. Mahaffee WF, Kloepper JW (1997a) Temporal changes in the bacterial communities of soil, rhizosphere, and endorhiza associated with field-grown cucumber (Cucumis sativa L.). Microbial Ecol 34:210–223

    Article  Google Scholar 

  48. Mahaffee WF, Kloepper JW (1997b) Bacterial communities of the rhizosphere and endorhizosphere associated with field-grown cucumber plants inoculated with a plant growth-promoting rhizobacterium or its genetically modified derivative. Can J Microbiol 43:344–353

    CAS  PubMed  Google Scholar 

  49. Marschner H (1984) Nährstoffdynamik in der Rhizosphare. Vortrag Botaniker-Tagung, Wien

    Google Scholar 

  50. Marschner H, Treeby M, Romheld V (1989) Role of root-induced changes in the rhizosphere for iron acquisition in higher plants. Z Pflanz Bodenkunde 152:197–204

    CAS  Google Scholar 

  51. Marschner P, Crowley DE, Higashi RM (1997) Root exudation and physiological status of a root-colonizing fluorescent pseudomonad in mycorrhizal and non-mycorrhizal pepper (Capsicum annuum L.). Plant Soil 189:11–20

    Article  CAS  Google Scholar 

  52. Martin JK (1971) 14C-labelled material leached from the rhizosphere of plants supplied with 14CO. Aust J Biol Sci 24:1131–1142

    CAS  Google Scholar 

  53. McSpadden-Gardener BB, Schroeder KL, Kalloger SE, Raajmakers JM, Thomashow LS, Weller DM (2000) Genotypic and phenotypic diversity of phlD-containing Pseudomonas strain isolated from the rhizosphere of wheat. Appl Environ Microbiol 66:1939–1946

    CAS  PubMed  Google Scholar 

  54. Meharg AA, Killham K (1995) Loss of exudates from the roots of perennial ryegrass inoculated with a range of micro-organisms. Plant Soil 170:345–349

    CAS  Google Scholar 

  55. Merbach W, Mirus E, Knof G, Remus R, Ruppel S, Russow R, Gransee A, Schulze J (1999) Release of carbon and nitrogen compounds by plant roots and their possible ecological importance. J Plant Nutr Soil Sci 162:373–383

    Article  CAS  Google Scholar 

  56. Metting BF (1993) Soil microbial ecology. Marcel Dekker, New York

    Google Scholar 

  57. Miethling R, Wieland G, Backhaus H, Tebbe CC (2000) Variation of microbial rhizosphere communities in response to crop species, soil origin, and inoculation with Sinorhizobium meliloti L33. Microbial Ecol 40:43–56

    CAS  Google Scholar 

  58. Mukerji KG (2002) Rhizosphare biology. In: Mukerji KG et al. (eds) Techniques in mycorrhizal studies. Kluwer Academic, Dordrecht, pp 87–101

    Google Scholar 

  59. Nagahashi G, Douds DD Jr, Abney GD (1996) Phosphorus amendment inhibits hyphal branching of the VAM fungus Gigaspora margarita directly and indirectly through its effect on root exudation. Mycorrhiza 6:403–408

    Article  CAS  Google Scholar 

  60. Nair MG, Safir GR, Siqueira JO (1991) Isolation and identification of vesicular-arbuscular mycorrhiza-stimulatory compounds from clover roots. Appl Environ Microbiol 57:434–439

    CAS  PubMed  Google Scholar 

  61. Neal JL, Atkinson TG, Larson RI (1970) Changes in the rhizosphere microflora of spring wheat induced by disomic substitution of a chromosome. Can J Microbiol 16:153–158

    PubMed  Google Scholar 

  62. Neal JL, Larson RJ, Atkinson TG (1973) Changes in rhizosphere populations of selected groups of physiological groups of bacteria related to substitution of specific pairs of chromosomes in spring wheat. Plant Soil 39:209–212

    Article  Google Scholar 

  63. Nehl DB, Allen SJ, Brown JF (1997) Deleterious rhizosphere bacteria: an integrating perspective. Appl Soil Ecol 5:1–20

    Article  Google Scholar 

  64. Nehls U, Wiese J, Hampp R (2000) External sugar concentration as a signal controlling ectomycorrhizal fungal gene expression. In: Poldila G, Douds DD Jr (eds) Current advances in mycorrhizal research. APS Press, St Paul, Minn, pp 1–26

    Google Scholar 

  65. Nielsen KM, Elsas JD (2001) Stimulatory effects of compounds present in the rhizosphere on natural transformation of Acinetobacter sp. BD413 in soil. Soil Biol Biochem 33:345–357

    Article  CAS  Google Scholar 

  66. Peters NK, Long SR (1988) Alfalfa root exudates and compounds which promote or inhibit induction of Rhizobium meliloti nodulation genes. Plant Physiol 88:396–400

    CAS  Google Scholar 

  67. Rengel Z, Ross G, Hirsch P (1998) Plant genotype micro-nutrient influence colonization of wheat roots by soil bacteria. J Plant Nutr 21:99–113

    CAS  Google Scholar 

  68. Schilling G, Gransee A, Deubel A, Lezovic G, Ruppel S (1998) Phosphorus availability, root exudates, and microbial activity in the rhizosphere. Z Pflanz Bodenkunde 161:465–478

    CAS  Google Scholar 

  69. Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic Press, San Diego, Calif

    Google Scholar 

  70. Suriyaperruma SP, Koske RE (1995) Attraction of germ tube and germination of spores of the arbuscular mycorrhizal gus Gigaspora gigantea in the presence of roots of maize posed to different concentrations of phosphorus. Mycology 87:772–778

    Google Scholar 

  71. Tawaraya K, Sasai K, Wagatsuma T (1994) Effect of phosphate application on the contents of amino acids and reducing sugars in the rhizosphere and VA mycorrhizal infection of wheat clover. Soil Sci Plant Nutr 40:539–543

    CAS  Google Scholar 

  72. Tawaraya K, Watanabe S, Yoshida E, Wagatsuma T (1996a) Effect of onion (Allium cepa) root exudates on the hyphal growth of Gigaspora margarita. Mycorrhiza 6:57–59

    Google Scholar 

  73. Tawaraya K, Saito M, Morioka M, Wagatsuma T (1996b) Effect of the concentration of phosphate on spore germination and hyphal growth of the arbuscular mycorrhizal fungus, Gigaspora margarita Becker & Hall. Soil Sci Plant Nutr 42:667–667

    Google Scholar 

  74. Tesfaye M, Temple SJ, Allan DL, Vance CP, Samac DA (2001) Over-expression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum. Plant Physiol 127:1836–1844

    Article  CAS  PubMed  Google Scholar 

  75. Tsai SM, Phillips AD (1991) Flavonoids released naturally from alfalfa promote development of symbiotic Glomus spores in vitro. Appl Environ Microbiol 57:1485–1488

    CAS  PubMed  Google Scholar 

  76. Uren NC (2001) Types, amounts, and possible functions of compounds released into the rhizosphere by soil-grown plants. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere. Marcel Dekker, New York, pp 19–40

    Google Scholar 

  77. von der Weid I, Paiva E, Nobrega A, van Elsas JD, Seldin L (2000) Diversity of Paenibacillus polymyxa strains isolated from the rhizosphere of maize planted in Cerrado soil. Res Microbiol 151:369–381

    PubMed  Google Scholar 

  78. Wardle DA (1992) A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biol Rev 67:321–358

    Google Scholar 

  79. Wei G, Kloepper JW, Tuzun S (1996) Induced systemic resistance to cucumber diseases and increased plant growth by plant-promoting rhizobacteria under field conditions. Phytopathology 86:221–224

    Google Scholar 

  80. Werner D (2001) Organic signals between plants and microorganisms. In: Pinton R, Varanini Z, Nannipieri P (eds) Rhizosphere, biochemistry and organic substances at the soil-plant interface. Marcel Dekker, New York, pp 197–222

    Google Scholar 

  81. Wiehe W, Hoflich G (1995) Survival of plant growth promoting rhizosphere bacteria in the rhizosphere of different crops and migration to non-inoculated plants under field conditions in north-east Germany. Microbiol Res 150:201–206

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this chapter

Cite this chapter

Singh, G., Mukerji, K.G. (2006). Root Exudates as Determinant of Rhizospheric Microbial Biodiversity. In: Mukerji, K.G., Manoharachary, C., Singh, J. (eds) Microbial Activity in the Rhizoshere. Soil Biology, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29420-1_3

Download citation

Publish with us

Policies and ethics