Skip to main content

Influence of the Crystal Structure Defects on Scintillation Properties

  • Chapter
Inorganic Scintillators for Detector Systems

Part of the book series: Particle Acceleration and Detection ((PARTICLE))

  • 1696 Accesses

Abstract

This chapter discusses the influence of different crystal structure defects on the scintillation crystal conversion efficiency, energy transfer, luminescence yield and light collection, as well as on their radiation hardness. During the synthesis of crystalline media defects are inevitably produced and are classified according to their size and shape: point, linear and three-dimensional defects. Another type of defects are produced in the scintillators under ionizing radiation. Charged particles as light as electrons create charge defects in crystals. Heavier charged particles like protons, α-particles, hadrons and nuclear fragments loose much more energy when colliding with the lattice ions, resulting in relatively large damaged area of several crystallographic cells. The impact of these radiation induced defects on the radiation damage is presented, in particular on the scintillation efficiency and on crystal transparency. The dynamic of these effects is discussed in detail, for the damage building as well as for its recovery. The chapter concludes with practical considerations on how to improve scintillator radiation hardness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Van Eijk CWC (2000) Inorganic scintillators for the next generation of neutron beam facilities. In: Mikhailin VV (Ed). Proc. of the Fifth Int. Conf. on Inorganic Scintillators and Their Applications, SCINT99. Moscow State University, Moscow, pp 22–32

    Google Scholar 

  2. Bisonnette JP, Munro P (1996) Evaluation of a high density scintillating glass for portal imaging, Med. Phys. 23: 401–406

    Article  Google Scholar 

  3. Grynev BV, Seminozhenko VP (1993) Scintillation detectors for ruggedized applications. Osnova, Kharkov (in Russian)

    Google Scholar 

  4. Koepke BG, Anderson RH, Stokos RI (1976) Deformation in ceramics materials. In: Bradt RC (ed). Pergamon, New York-London, pp 497–513

    Google Scholar 

  5. Blasse G, Grabmaier BC (1994) Luminescence Materials. Springer, Berlin, pp 84–162

    Google Scholar 

  6. Koch A, Raven C (1997) Scintallators for high resolution x-ray imaging. In: Yin Zhiwen, Feng Xiqi, Li Peijun, Xue Zhilin (Eds). Proc. Int. Conf. on Inorganic Scintillators and Their Applications, SCINT’97. CAS, Shanghai Branch Press, Shanghai, pp 28–31

    Google Scholar 

  7. US Patents 4362946

    Google Scholar 

  8. US Patent 3960756

    Google Scholar 

  9. US Patent 4374749

    Google Scholar 

  10. US Patent 4375423

    Google Scholar 

  11. Gektin AV, Shiran NV, Pogorelova NV et al. (2002) Inorganic-organic rubbery scintillators. Nucl. Instrum. Methods Phys. Res. A 486: 191–195

    Article  ADS  Google Scholar 

  12. Greskovich C, Duclos S (1997) Ceramic scintillators. Annu. Rev. Mater. Sci. 27: 69–88

    Article  ADS  Google Scholar 

  13. US Patent 4747937.

    Google Scholar 

  14. Hirth JP, Lote J (1972) Theory of Dislocation. McGraw-Hill, New York, St. Louis, San Francisco, Toronto

    Google Scholar 

  15. Gektin AV, Krasovitskaya IM, Shiran NV (1984) Vacancy formation during plastic deformation of KCl crystals. Solid State Phys. 26: 2515–2517

    Google Scholar 

  16. Gektin AV, Serebryanny VYa, Shiran NV (1992) Point defect interaction and vacancy cluster formation in alkali halide crystals. Phys. Status Solidi a 134:351–358

    Article  ADS  Google Scholar 

  17. Ossipyan YA, Shmurak SZ (1981) Deformation luminescence and motion of charged dislocations in crystals. Defects in Insulation Crystals. Springer, Riga, Berlin, Heidelberg, pp 135–162

    Google Scholar 

  18. Bates CW Jr, Schneider I, Salau A et al. (1976) Strain-induced room temperature photoluminescence in CsI and CsI(Na). Solid State Commun 18: 101–103

    Article  ADS  Google Scholar 

  19. Tyapunina NA, Tselebrovsky AN (1973) Vacancy concentration on plastically deformed NaCl type crystals. Crystallography 18: 649–650

    Google Scholar 

  20. Gektin AV, Shiran NV (1997) Scintillation losses in irradiated CsI-based scintallators. In: Yin Zhiwen, Feng Xiqi, Li Peijun, Xue Zhilin (Eds). Proc. Int. Conf. on Inorganic Scintillators and Their Applications, SCINT’97. CAS, Shanghai Branch Press, Shanghai, pp 115–120

    Google Scholar 

  21. Gavrilov VV, Gektin AV (1998) Deformation sensibilization of CsI based crystals. Solid State Phys. 30: 3163–3165

    Google Scholar 

  22. Bredikhin SI, Glushuk OA, Shmurak SZ (1982) Deformation sesibilisation of color centers in zinc selenide crystals. Solid State Phys. 24: 2249–2254 (in Russian: Fisika Tverdogo Tela)

    Google Scholar 

  23. Annenkov A, Korzhik M, Lecoq P (2002) Lead tungstate scintillation material. Nucl. Instrum. Methods Phys. Res. A 490: 30–50

    Article  ADS  Google Scholar 

  24. Han Baoguo, Feng Xiqi, Hu Guangin et al. (1999) Annealing effects and radiation damage mechanisms of PbWO4 single crystals. J. Appl. Phys. 86: 3571–3575

    Article  ADS  Google Scholar 

  25. Böhm M, Henecker F, Hofstaetter A et al. (1998) Shallow electron traps in the scintillator material PbWO4 to thermally stimulated luminescence In: Baccaro S, Borgia B, Dafinei I, Longo E (Eds). Tungstate Crystals. Proc. Int. Workshop on Tungstate Crystals, Rome, pp 139–146

    Google Scholar 

  26. Böhm M, Henecker F, Hofstaetter A et al. (1999) Electron traps in the scintillator material PbWO4 and their correlation to the thermally stimulated luminescence. Radiat. Eff. Defects Solids 150: 413–417

    Article  Google Scholar 

  27. Laguta VV, Rosa J, Zaritski MI et al. (1998) Polaronic WO 3−4 centers in PbWO4 single crystals. J. Phys.: Condens. Matter 10: 7293–7302

    Article  ADS  Google Scholar 

  28. Hofstaetter A, Alves H, Bohm M et al. (2000) Spectroscopic characterisation of defects in tungstate scintillators. In: Mikhailin VV (Ed). Proc. of the Fifth Int. Conf. on Inorganic Scintillators and Their Applications, SCINT99. Moscow State University, Moscow, pp 128–136

    Google Scholar 

  29. Hofstaetter A, Korzhik MV, Laguta VV et al. (2001) The role of the defect states in the creation of the intrinsic WO3− centers in PbWO4 by sub-band excitation. Radiat. Meas. 33: 533–536

    Article  Google Scholar 

  30. Nikl M, Bonacek P, Nitsch K et al. (1997) Decay kinetics and thermoluminescence of PbWO4: La3+. Appl. Phys. Lett. 71: 3755–3757

    Article  ADS  Google Scholar 

  31. Baccaro S, Bohacek P, Borgia B et al. (1997) Influence of La3+-doping on radiation hardness and thermoluminescence characteristics of PbWO4. Phys. Status Solidi a 160: R5–R6

    Article  ADS  Google Scholar 

  32. Annenkov AN, Auffray E, Korzhik MV et al. (1998) On the origin of the transmission damage in lead tungstate crystals under irradiation. Phys. Status Solidi a 170: 47–62

    Article  ADS  Google Scholar 

  33. Wang LM. Chen Y, Wu X (1994) Charge-state stability and optical transitions of oxygen impurities in barium fluoride crystal. Scintillator and Phospor Materials MRS Proc. 348: 399–406

    Google Scholar 

  34. Chen Lingyan, Du Jie, Wang Liming, Xiang Kaihua (1994) An investigation of radiation damage induced by hydroxyl and oxygen impurities in BaF2 crystal. Scintillator and Phospor Materials MRS Proc. 348: 447–454

    Google Scholar 

  35. Pena JI (1988) Radiation effects in hydrolised CaF2, SrF2 and BaF2. J. Phys. Chem. Solids 49: 273–278

    Article  ADS  Google Scholar 

  36. Shamovsky LM, Glushkova AS (1963) Scintillators and scintillation materials. Kharkov 2: 5–2 (in Russian)

    Google Scholar 

  37. Nekrasov VN, Ivanovskt LE (1987) Melts 1: 82–85 (in Russian)

    Google Scholar 

  38. (a) Okada TJ (1981) Optical behavior of V centers in KI crystals at low temperatures. J. Phys. Soc. 50(2): 582–591 (b) Andrews L (1976) Optical spectra of the dibromide and diodide ions in the matrix-isolated M+Br2 and M+I2 species. Am. Chem. Soc. 98(7): 2152–2156

    Article  ADS  Google Scholar 

  39. Rzepka E, Bernard M, Lefrant S (1998) V centers in irradiated alkali halide crystals. Nucl. Instrum. Methods Phys. Res. B 32: 235–237

    Article  ADS  Google Scholar 

  40. Weber M., Lecoq P., Ruchti R., Woody C., Yen W., Zhu Ren-yuan, (Eds) (1994) Scintillator and Phospor Materials (MRS Proceeding, 348) 565pp

    Google Scholar 

  41. Korzhik MV, Pavlenko VB, Timoshenko TN et al. (1996) Spectroscopy and origin of radiation centers and scintillation in PbWO4 single crystals. Phys Status Solidi a 154: 779–792

    Article  ADS  Google Scholar 

  42. Annenkov AA, Fedorov AA, Galez Ph et al. (1996) The influence of additional doping on the spectroscopic and scintillation parameters of PbWO4 crystals. Phys Status Solidi a 156: 493–503

    Article  ADS  Google Scholar 

  43. Zang Y, Holzwarth NAW, Williams RT (1998) Electronic band structures of sheelite materials CaMoO4, CaWO4, PbMoO4 and PbWO4. Phys. Rev. 57:12738–12750

    Article  Google Scholar 

  44. Kubota S, Sakuragi S, Hashimoto S et al. (1988) A new scintillation material: Pure CsI with 10 ns decay time. Nucl. Instrum. Methods Phys. Res. A 268:275–277

    Article  ADS  Google Scholar 

  45. Gektin AV, Gorelov AI, Rykalin VI et al. (1990) CsI-based scintillators in γ-detection systems. Nucl. Instrum. Methods Phys. Res. A 294: 591–594

    Article  ADS  Google Scholar 

  46. Nishimura H, Sakata S, Tsujimoto T, Nakayama M (1995) Origin of the 4.1 eV luminescence in pure CsI scintillator. Phys. Rev. B 51: 2167–2172

    Article  ADS  Google Scholar 

  47. Gektin AV, Shiran NV, Charkina TA et al. (1992) radiation stability and afterglow problem for fast CsI-type Scintillators. Heavy Scintillators for Scientific and Industrial Applications. Frontieres, France, pp 493–498

    Google Scholar 

  48. Radzhbov A, Istomin A, Nepomnyashikh et al. (2005) Exciton interaction with impurity in barium fluoride crystal. Nucl. Instrum. Methods Phys. Res. A 537:71–75

    Article  ADS  Google Scholar 

  49. US Patent 5521387

    Google Scholar 

  50. Kostler W, Winnacker A, Grabmaier W (1993) Effect of Pr-codoping on the X-ray induced afterglow of (Y,Gd)2O3:Eu. J. Phys. Chem. Solids 56: 907–913

    Article  Google Scholar 

  51. US Patent 5518658

    Google Scholar 

  52. Yoshida M, Nakagawa M, Fuji H et al. (1998) Application of Gd2O2S ceramic scintillator for X-ray solid state detector in X-ray CT. Japan. J. Appl. Phys. 27: L1572–L1575

    Google Scholar 

  53. US Patent 5318722

    Google Scholar 

  54. Ren-ynan Zhu, Da-an Ma, Newman H (1994) Barium fluoride crystals for future hadron colliders. Scintillator and Phospor Materials. MRS Proc. 348: 91–98

    Google Scholar 

  55. Lecoq P (1994) Progress on scintillator research by the Crystal Clear Collaboration. Scintillator and Phospor Materials. MRS Proc. 348: 51–64

    Google Scholar 

  56. Baccaro S, Borgia B, Dafinei I, Longo E. (1998) Tungstate Crystals (Proc Int Workshop on Tungstate Crystals. Rome, Italy, 12–14 Oct. 1998), 393pp

    Google Scholar 

  57. BELLE Collaboration (1995), Technical Design Report, KEK Report 95-1.

    Google Scholar 

  58. BaBar Collaboration (1995), Technical Design Report, SLAC-R-95-457.

    Google Scholar 

  59. Kolontsova EV (1977) Radiation induced transformations in solids. In: Trefilov VI (Ed) Radiation Effects in Solids. Kiev, pp 107–112 (in Russian)

    Google Scholar 

  60. Kolontsova EV, Kulago EE (1972) Radiation effects in irradiated with neutrons single crystals of LiNbO3, K2SO4, NaNO3. Crystallography 17: 1197–1201 (in Russian)

    Google Scholar 

  61. Kolontsova EV, Kulago EE, Tomilin NA (1973) Radiation induced phase tensition in a quartz. Crystallography 18: 1198–1201 (in Russian)

    Google Scholar 

  62. Mott NE, Gurney RW (1948) Electronic Process in Ionic Crystals. Oxford, p 304

    Google Scholar 

  63. Gektin AV, Serebrynny VYa, Shiran NV (1988) Color centers accumulation model for ionic crystals, Ukr. J. Phys. (in Russian) 33: 590–592

    Google Scholar 

  64. Aqullo-Lopez F, Jaque F (1973) Unified model for all stages of F-coloring of NaC. J. Phys. Chem. Solids 34: 1949–1960

    Article  ADS  Google Scholar 

  65. (a) Hughes AE, Jain SC (1979) Metal colloids in ionic crystals. Adv. Phys. 28:717–828 (b) Hughes AE (1983) Colloid formation in irradiated insulators. Radiat. Eff. 74: 57–76

    Article  ADS  Google Scholar 

  66. Gektin AV, Charkina NA, Shiran NV et al. (1989) Optical absorption of colloidal particles in doped CsI crystals. Opt. Spectrosc. (Russian) 67(5) 1989:1075–1077

    Google Scholar 

  67. Kobayashi M, Sakuragi S (1987) Radiation damage of CsI(Tl) above 103 rad Nucl. Instrum. Methods 254a: 275–280

    ADS  Google Scholar 

  68. Renker D (1989) Technical report CERN N89-10 ECFA Study. Week Instrum. Technol. High-Luminosity Hadron Colliders 2: 601–610

    Google Scholar 

  69. Schotanus P, Kamermans R, Dorenbos P (1990) Scintillation characteristics of pure and Tl-doped CsI crystals. IEEE Trans. Nucl. Sci. 37: 177–182

    Article  ADS  Google Scholar 

  70. Hitlin DD, Eigen G (1992) Radiation hardness study of CsI crystals. In: Heavy Scintillators for scientific and industrial applications. Frontieres, France, pp 467–478

    Google Scholar 

  71. Kobayshi M, Sakuragi S (1987) Radiation damage of CsI(Tl) crystals above 103 rad. Nucl. Instrum. Methods Phys. Res. A 254: 275–280

    Article  ADS  Google Scholar 

  72. Gektin AV, Globus ME, Shepelev OA et al. (1997) Scintillation losses due to radiation damage in long CsI(Tl) crystals. Funct. Mater. 4: 544–547

    Google Scholar 

  73. Schulman J, Compton WD (1963) Color Centers in Solids. Pergamon, Oxford-London-New York-Paris, p 359

    Google Scholar 

  74. Hobbs LW, Hughes AE, Pooley D (1973) A study of interstitial clusters in irradiated alkali halides using direct electron microscopy. Proc. Roy. Soc. London A 332: 167–185

    Article  ADS  Google Scholar 

  75. Jacobs G, Fiermans L, van de Wiele F (1961) Optical absorption of cesium halides with excess halogen. Physica 27: 144–148

    Article  ADS  Google Scholar 

  76. Globus ME (1993) Spectrometric characteristics of ionizing radiation detectors based on BGO and CWO. Int. J. Radiat. Applic. Instrum. D 21: 131–133

    Google Scholar 

  77. Globus M, Grinyov B (1995) Calculations of scintillators for radiation detector systems: dependence of spectrometric characteristics on shape, size and reflector type. IEEE Trans. Nucl. Sci. 42: 357–360

    Article  ADS  Google Scholar 

  78. Korjik M, Khrutchinsky A, Missevitch O et al. (2002) On the response linearity of scintillation detectors in irradiation environment. CMS IN 2002/056, p 9

    Google Scholar 

  79. Williams RT, Yochum HM, Ucer KB et al. (2000) Picosecond and nanosecond time-resolved study of luminescence and absorption of CdWO4 and PbWO4. In: Mikhailin VV (Ed). Proc. of the Fifth Int. Conf. on Inorganic Scintillators and Their Applications, SCINT99. Moscow State University, Moscow, pp 336–341

    Google Scholar 

  80. Millers D, Chernov S, Grigorieva L et al. (2000) Luminescence and transient absorption of doped PWO4 scintillator crystals. In: Mikhailin VV (Ed). Proc. of the Fifth Int. Conf. on Inorganic Scintillators and Their Applications, SCINT99. Moscow State University, Moscow, pp 613–618

    Google Scholar 

  81. Grigorieva L. Private communication

    Google Scholar 

  82. Yin ZW (1994) Research and development works on BaF2 crystals in Shanghai Institute of Ceramics. Proc. “Scintillator and Phospor Materials”. MRS Proc. 348: 65–76

    Google Scholar 

  83. Ramos BS, Hernandes AJ, Muerietta SA et al. (1985) Model for F-center production in alkali halides doped with divalent cation impurities that change their valence state by irradiation Phys. Rev. B 31: 8164–8170

    Article  ADS  Google Scholar 

  84. Annenkov AN, Auffray E, Borisevich A et al. (1999) Suppression of the radiation damage in lead tungstate scintillation crystal. Nucl. Instrum. Methods Phys. Res. A 426: 486–490

    Article  ADS  Google Scholar 

  85. Haliburton LE, Edwards GJ (1994) Radiation damage mechanisms in scintillator materials: application to BaF2 and CeF3. Scintillator and Phosphor Materials. MRS Proc. 348: 423–434

    Google Scholar 

  86. Ren Saooxia, Chen Gang, Zhang Fengyin, Zheng Yanning (1994) The effect of impurities on the radiation damage of barium fluoride crystal. Scintillator and Phospor Materials. MRS Proc. 348: 435–440

    Google Scholar 

  87. Shiran N, Gektin AV, Ivanov N et al. (1999) The role of oxygen in energy transfer processes in LiBaF3 scintillator. Mikhailin V., (Ed). Inorganic Scintillators and their Applications. Moscow pp. 230–235

    Google Scholar 

  88. Korzhik MV (2003) A general approach to increasing the radiation hardness of complex strucutre oxide scintillation crystals. Nucl. Instrum. Methods Phys. Res. A 500:116–120

    Article  ADS  Google Scholar 

  89. Smirnova SA, Korzhik MV (1996) Growth of crystals of yttrium-aluminum perovskities with rare earth elements. In: Dorenbos P, van Eijk CWE (Eds). Proc. Int. Conf. on Inorganic Scintillators and Their Applications, SCINT’95. Delft University Press, The Netherlands, pp 495–497

    Google Scholar 

  90. Annennkov AN, Auffray E, Chipaux R et al. (1998) Systematic study of the short-term instability of PbWO4 scintillator parameters under irradiation. Radiat. Meas. 29: 27–38

    Article  Google Scholar 

  91. Gektin AV, (1999) Halide scintillators. Present status and prospects. In: Mikhailin VV (Ed). Proc. of the Fifth Int. Conf. on Inorganic Scintillators and Their Applications, SCINT99. Moscow State University, Moscow, pp 79–88

    Google Scholar 

  92. Annenkov AN, Auffray E, Fedorov A et al. (1997) Radiation damage kinetics in PWO crystals. CMS Note 1997/008, 9 pp.

    Google Scholar 

  93. Zhu RY, Ma DA, Newman HB et al. (1996) A study on the properties of lead tungstate crystals. Nucl. Instrum. Methods Phys. Res. A 376: 319–334

    Article  ADS  Google Scholar 

  94. Nikl M, Bonacek P, Nitsch K et al. (1997) Decay kinetics and thermoluminescence of PbWO4: La3+. Appl. Phys. Lett. 71: 3755–3757

    Article  ADS  Google Scholar 

  95. Kobayashi M, Usuki Y, Ishii M et al. (1998) Improvement in radiation hardness of PbWO4 scintillating crystals by La-doping. Nucl. Instrum. Methods Phys. Res. A 404: 149–156

    Article  ADS  Google Scholar 

  96. Nikl M, Nitsch K, Baccaro S et al. (1997) Radiation induced formation of color centers in PbWO4 single crystals. J. Appl. Phys. 82: 5758–5762

    Article  ADS  Google Scholar 

  97. Annenkov AN, Auffray E, Borisevich AE et al. (2002) On the mechanism of radiation damage in lead tungstate crystal optical transmission. Phys. Status Solidi A 191: 277–290

    Article  ADS  Google Scholar 

  98. Korzhik MV (2003) Physics of scintillators on a base of oxide single crystals. Belarussian State University, Minsk

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2006). Influence of the Crystal Structure Defects on Scintillation Properties. In: Inorganic Scintillators for Detector Systems. Particle Acceleration and Detection. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27768-4_4

Download citation

Publish with us

Policies and ethics