Skip to main content

Thymic Commitment of Regulatory T Cells Is a Pathway of TCR-Dependent Selection That Isolates Repertoires Undergoing Positive or Negative Selection

  • Chapter
Book cover CD4+CD25+ Regulatory T Cells: Origin, Function and Therapeutic Potential

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 293))

Abstract

The seminal work of Le Douarin and colleagues (Ohki et al. 1987; Ohki et al. 1988; Salaun et al. 1990; Coutinho et al. 1993) first demonstrated that peripheral tissue-specific tolerance is centrally established in the thymus, by epithelial stromal cells (TEC). Subsequent experiments have shown that TEC-tolerance is dominant and mediated by CD4 regulatory T cells (Treg) that are generated intrathymically by recognition of antigens expressed on TECs (Modigliani et al. 1995; Modigliani et al. 1996a). From these and other observations, in 1996 Modigliani and colleagues derived a general model for the establishment and maintenance of natural tolerance (MM96) (Modigliani et al. 1996b), with two central propositions: (1) T cell receptor (TCR)-dependent sorting of emergent repertoires generates TEC specific Treg displaying the highest TCR self-affinities below deletion thresholds, thus isolating repertoires undergoing positive and negative selection; (2) Treg are intrathymically committed (and activated) for a unique differentiative pathway with regulatory effect functions. The model explained the embryonic/perinatal time window of natural tolerance acquisition, by developmental programs determining (1) TCR multireactivity, (2) the cellular composition in the thymic stroma (relative abundance of epithelial vs hemopoietic cells), and (3) the dynamics of peripheral lymphocyte pools, built by accumulation of recent thymic emigrants (RTE) that remain recruitable to regulatory functions. We discuss here the MM96 in the light of recent results demonstrating the promiscuous expression of tissue-specific antigens by medullary TECs (Derbinski et al. 2001; Anderson et al. 2002; Gotter et al. 2004) and indicating that Treg represent a unique differentiative pathway (Fontenot et al. 2003; Hori et al. 2003; Khattri et al. 2003), which is adopted by CD4 T cells with high avidity for TEC-antigens (Bensinger et al. 2001; Jordan et al. 2001; Apostolou et al. 2002). In the likelihood that autoimmune diseases (AID) result from Treg deficits, some of which might have a thymic origin, we also speculate on therapeutic strategies aiming at selectively stimulating their de novo production or peripheral function, within recent findings on Treg responses to inflammation (Caramalho et al. 2003; Lopes-Carvalho et al., submitted, Caramalho et al., submitted).

In short, the MM96 argued that natural tolerance is dominant, established and maintained by the activity of Treg, which are selected upon high-affinity recognition of self-ligands on TECs, and committed intrathymically to a unique differentiative pathway geared to anti-inflammatory and antiproliferative effector functions. By postulating the intrathymic deletion of self-reactivities on hemopoietic stromal cells (THC), together with the inability of peripheral resident lymphocytes to engage in the regulatory pathway, the MM96 simultaneously explained the maintenance of responsiveness to non-self in a context of suppression mediating dominant self-tolerance. The major difficulty of the MM96 is related to the apparent tissue specificity of Treg repertoires generated intrathymically. This difficulty has now been principally solved by the work of Hanahan, Kyewski and others (Jolicoeur et al. 1994; Derbinski et al. 2001; Anderson et al. 2002; Gotter et al. 2004), demonstrating the selective expression of a variety of tissue-specific antigens by TECs, in topological patterns that are compatible with the MM96, but difficult to conciliate with recessive tolerance models (Kappler et al. 1987; Kisielow et al. 1988). While the developmentally regulated multireactivity of TCR repertoires (Gavin and Bevan 1995), as well as the peripheral recruitment of Treg among RTE (Modigliani et al. 1996a) might add to this process, it would seem that the establishment of tissue-specific tolerance essentially stems from the “promiscuous expression of tissue antigens” by TEC. The findings of AID resulting from natural mutations (reviewed in Pitkanen and Peterson 2003) or the targeted inactivation (Anderson et al. 2002; Ramsey et al. 2002) of the AIRE transcription factor that regulates promiscuous gene expression on TECs support this conclusion.

The observations on the correlation of natural or forced expression of the Foxp3 transcription factor in CD4 T cells with Treg phenotype and function (Fontenot et al. 2003; Hori et al. 2003; Khattri et al. 2003) provided support for the MM96 contention that Treg represent a unique differentiative pathway that is naturally established inside the thymus. Furthermore, Caton and colleagues (Jordan et al. 2001), as well as several other groups (Bensinger et al. 2001; Apostolou et al. 2002), have provided direct evidence for our postulate that Treg are selected among differentiating CD4 T cells with high affinity for ligands expressed on TECs (Modigliani et al. 1996b).

Finally, the demonstration by Caramalho et al. that Treg express innate immunity receptors (Caramalho et al. 2003) and respond to pro-inflammatory signals and products of inflammation (Caramalhoet al., submitted) brought about a new understanding on the peripheral regulation of Treg function. Together with the observation that Treg also respond to ongoing activities of “naï ve/effector” T cells—possibly through the IL-2 produced in these conditions—these findings explain the participation of Treg in all immune responses (Onizuka et al. 1999; Shimizu et al. 1999; Annacker et al. 2001; Curotto de Lafaille et al. 2001; Almeida et al. 2002; Shevach 2002; Bach and Francois Bach 2003; Wood and Sakaguchi 2003; Mittrucker and Kaufmann 2004; Sakaguchi 2004), beyond their fundamental role in ensuring self-tolerance (e.g., Modigliani et al. 1996a; Shevach 2000; Hori et al. 2003; Sakaguchi 2004; Thompson and Powrie 2004). Thus, anti-inflammatory and anti-proliferative Treg are amplified by signals that promote or mediate inflammation and proliferation, accounting for the quality control of responses (Coutinho et al. 2001). In turn, such natural regulation of Treg by immune responses to non-self may well explain the alarming epidemiology of allergic and AID in wealthy societies (Wills-Karp et al. 2001; Bach 2002; Yazdanbakhsh et al. 2002), where a variety of childhood infections have become rare or absent. Thus, it is plausible that Treg were evolutionarily set by a given density of infectious agents in the environment. With hindsight, it is not too surprising that natural Treg performance falls once hygiene, vaccination, and antibiotics suddenly (i.e., 100 years) plunged infectious density to below some critical physiological threshold. As the immune system is not adapted to modern clean conditions of postnatal development, clinical immunologists must now deal with frequent Treg deficiencies (allergies and AID) for which they have no curative or rational treatments. It is essential, therefore, that basic immunologists concentrate on strategies to selectively stimulate the production, survival, and activity of this set of lymphocytes that is instrumental in preventing immune pathology. We have argued that the culprit of this inability of basic research to solve major clinical problems has been the self-righteousness of recessive tolerance champions, from Ehrlich to some of our contemporaries. It is ironical, however, that none of us—including the heretic opponents of horror autotoxicus—had understood that self-tolerance, or its robustness at least, is in part determined by the frequency and intensity of the responses to non-self.

In the evolution of ideas on immunological tolerance, the time might be ripe for some kinds of synthesis. First, conventional theory reduced self-tolerance to negative selection and microbial defense to positive selection, while the MM96 solution was the precise opposite: positive selection of autoreactivities for self-tolerance (Treg) and negative selection (of Treg) for ridding responses. In contrast, it would now appear that positive and negative selection of autoreactive T cells are both necessary to establish either self-tolerance or competence to eliminate microbes, two processes that actually reinforce each other in the maintenance of self-integrity. Second, V region recognition has generally been held responsible for specific discrimination between what should be either tolerated or eliminated from the organism. In contrast again, it would now seem that both processes of self-tolerance and microbial defense (self/non-self discrimination) also operate on the basis of evolutionarily ancient, germ-line-encoded innate, nonspecific receptors (Medzhitov and Janeway 2000) capable of a coarse level of self/non-self discrimination (Coutinho 1975). It could thus be interesting to revisit notions of cooperativity between V-regions and such mitogen receptors, both in single cell functions (Coutinho et al. 1974) and in the system’s evolution (Coutinho 1975, 1980) as well. After all, major transitions in evolution were cooperative (Maynard-Smith and Szathmary 1995).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albert LJ, Inman RD (1999) Molecular mimicry and autoimmunity. N Engl J Med 341:2068–2074

    Article  PubMed  CAS  Google Scholar 

  • Almeida AR, Legrand N, Papiernik M, Freitas AA (2002) Homeostasis of peripheral CD4+ T cells: IL-2R alpha and IL-2 shape a population of regulatory cells that controls CD4+ T cell numbers. J Immunol 169:4850–4860

    PubMed  Google Scholar 

  • Anastasi E, Campese AF, Bellavia D, Bulotta A, Balestri A, Pascucci M, Checquolo S, Gradini R, Lendahl U, Frati L, Gulino A, Di Mario U, Screpanti I (2003) Expression of activated Notch3 in transgenic mice enhances generation of T regulatory cells and protects against experimental autoimmune diabetes. J Immunol 171:4504–4511

    PubMed  CAS  Google Scholar 

  • Anderson G, Pongracz J, Parnell S, Jenkinson EJ (2001) Notch ligand-bearing thymic epithelial cells initiate and sustain Notch signaling in thymocytes independently of T cell receptor signaling. Eur J Immunol 31:3349–3354

    Article  PubMed  CAS  Google Scholar 

  • Anderson MS, Venanzi ES, Klein L, Chen Z, Berzins SP, Turley SJ, von Boehmer H, Bronson R, Dierich A, Benoist C, Mathis D (2002) Projection of an immunological self shadow within the thymus by the aire protein. Science 298:1395–1401

    Article  PubMed  CAS  Google Scholar 

  • Annacker O, Pimenta-Araujo R, Burlen-Defranoux O, Barbosa TC, Cumano A, Bandeira A ( 2001) CD25+CD4+ T cells regulate the expansion of peripheral CD4 T cells through the production of IL-10. J Immunol 166:3008–3018

    PubMed  CAS  Google Scholar 

  • Apostolou I, Sarukhan A, Klein L, von Boehmer H (2002) Origin of regulatory T cells with known specificity for antigen. Nat Immunol 3:756–763

    PubMed  CAS  Google Scholar 

  • Asano M, Toda M, Sakaguchi N, Sakaguchi S (1996) Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation. J Exp Med 184:387–396

    Article  PubMed  CAS  Google Scholar 

  • Bach JF (2001) Protective role of infections and vaccinations on autoimmune diseases. J Autoimmun 16:347–353

    PubMed  CAS  Google Scholar 

  • Bach JF (2002) The effect of infections on susceptibility to autoimmune and allergic diseases. N Engl J Med 347:911–920

    Article  PubMed  Google Scholar 

  • Bach JF, Francois Bach J (2003) Regulatory T cells under scrutiny. Nat Rev Immunol 3:189–198

    PubMed  Google Scholar 

  • Belkaid Y, Piccirillo CA, Mendez S, Shevach EM, Sacks DL (2002) CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature 420:502–507

    Article  PubMed  CAS  Google Scholar 

  • Bendelac A, Rivera MN, Park SH, Roark JH (1997) Mouse CD1-specific NK1 T cells: development, specificity, and function. Annu Rev Immunol 15:535–562

    Article  PubMed  CAS  Google Scholar 

  • Benoist C, Mathis D (2001) Autoimmunity provoked by infection: how good is the case for T cell epitope mimicry? Nat Immunol 2:797–801

    Article  PubMed  CAS  Google Scholar 

  • Bensinger SJ, Bandeira A, Jordan MS, Caton AJ, Laufer TM (2001) Major histocompatibility complex class II-positive cortical epithelium mediates the selection of CD4(+)25(+) immunoregulatory T cells. J Exp Med 194:427–438

    Article  PubMed  CAS  Google Scholar 

  • Bevan MJ (1977) In a radiation chimaera, host H-2 antigens determine immune responsiveness of donor cytotoxic cells. Nature 269:417–418

    Article  PubMed  CAS  Google Scholar 

  • Bevan MJ, Fink PJ (1978) The influence of thymus H-2 antigens on the specificity of maturing killer and helper cells. Immunol Rev 42:3–19

    PubMed  CAS  Google Scholar 

  • Billingham RE, Brent L, Medawar PB (1953) Activity acquired tolerance of foreign cells. Nature 172:603–606

    PubMed  CAS  Google Scholar 

  • Bjorksten B, Naaber P, Sepp E, Mikelsaar M (1999) The intestinal microflora in allergic Estonian and Swedish 2-year-old children. Clin Exp Allergy 29:342–346

    Article  PubMed  CAS  Google Scholar 

  • Boguniewicz M, Sunshine GH, Borel Y (1989) Role of the thymus in natural tolerance to an autologous protein antigen. J Exp Med 169:285–290

    Article  PubMed  CAS  Google Scholar 

  • Boon T, Cerottini JC, Van den Eynde B, van der Bruggen P, Van Pel A (1994) Tumor antigens recognized by T lymphocytes. Annu Rev Immunol 12:337–365

    Article  PubMed  CAS  Google Scholar 

  • Bras A, Aguas AP (1996) Diabetes-prone NOD mice are resistant to Mycobacterium avium and the infection prevents autoimmune disease. Immunology 89:20–25

    Article  PubMed  CAS  Google Scholar 

  • Cairns L, Rosen FS, Borel Y (1986) Mice naturally tolerant to C5 have T cells that suppress the response to this antigen. Eur J Immunol 16:1277–1282

    PubMed  CAS  Google Scholar 

  • Caramalho I, Lopes-Carvalho T, Ostler D, Zelenay S, Haury M, Demengeot J (2003) Regulatory T cells selectively express toll-like receptors and are activated by lipopolysaccharide. J Exp Med 197:403–411

    Article  PubMed  CAS  Google Scholar 

  • Charlton B, Taylor-Edwards C, Tisch R, Fathman CG (1994) Prevention of diabetes and insulitis by neonatal intrathymic islet administration in NOD mice. J Autoimmun 7:549–560

    Article  PubMed  CAS  Google Scholar 

  • Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N, McGrady G, Wahl SM (2003) Conversion of peripheral CD4+CD25− naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 198:1875–1886

    Article  PubMed  CAS  Google Scholar 

  • Cobbold SP, Castejon R, Adams E, Zelenika D, Graca L, Humm S, Waldmann H (2004) Induction of foxP3+ regulatory T cells in the periphery of T cell receptor transgenic mice tolerized to transplants. J Immunol 172:6003–6010

    PubMed  CAS  Google Scholar 

  • Cohen IR, Young DB (1991) Autoimmunity, microbial immunity and the immunological homunculus. Immunol Today 12:105–110

    Article  PubMed  CAS  Google Scholar 

  • Cohn M, Langman RE (1990) The protection: the unit of humoral immunity selected by evolution. Immunol Rev 115:11–147

    PubMed  CAS  Google Scholar 

  • Cooke A, Tonks P, Jones FM, O’shea H, Hutchings P, Fulford AJ, Dunne DW (1999) Infection with Schistosoma mansoni prevents insulin dependent diabetes mellitus in non-obese diabetic mice. Parasite Immunol 21:169–176

    Article  PubMed  CAS  Google Scholar 

  • Coutinho A (1975) The theory of the ‘one nonspecific signal’ model for B cell activation. Transplant Rev 23:49–65

    PubMed  CAS  Google Scholar 

  • Coutinho A (1980) The self-non self discrimination and the nature and acquisition of the antibody repertoire. Ann Immunol (Paris). 131D:235–253

    CAS  Google Scholar 

  • Coutinho A (2000) Germ-line selection ensures embryonic autoreactivity and a positive discrimination of self mediated by supraclonal mechanisms. Semin Immunol 12:205–213; discussion 257-344

    Article  PubMed  CAS  Google Scholar 

  • Coutinho A, Gronowicz E, Bullock WW, Moller G (1974) Mechanism of thymus independent immunocyte triggering. Mitogenic activation of B cells results in specific immune responses. J Exp Med 139:74–92

    Article  PubMed  CAS  Google Scholar 

  • Coutinho A, Coutinho G, Grandien A, Marcos MA, Bandeira A (1992) Some reasons why deletion and anergy do not satisfactorily account for natural tolerance. Res Immunol 143:345–354

    PubMed  CAS  Google Scholar 

  • Coutinho A, Salaun J, Corbel C, Bandeira A, Le Douarin N (1993) The role of thymic epithelium in the establishment of transplantation tolerance. Immunol Rev 133:225–240

    PubMed  CAS  Google Scholar 

  • Coutinho A, Kazatchkine MD, Avrameas S (1995) Natural autoantibodies. Curr Opin Immunol 7:812–818

    Article  PubMed  CAS  Google Scholar 

  • Coutinho A, Hori S, Carvalho T, Caramalho I, Demengeot J (2001) Regulatory T cells: the physiology of autoreactivity in dominant tolerance and “quality control” of immune responses. Immunol Rev 182:89–98

    Article  PubMed  CAS  Google Scholar 

  • Cozzo C, Larkin J 3rd, Caton AJ (2003) Cutting edge: self-peptides drive the peripheral expansion of CD4+CD25+ regulatory T cells. J Immunol 171:5678–5682

    PubMed  CAS  Google Scholar 

  • Curotto de Lafaille MA, Muriglan S, Sunshine MJ, Lei Y, Kutchukhidze N, Furtado GC, Wensky AK, Olivares-Villagomez D, Lafaille JJ (2001) Hyper immunoglobulin E response in mice with monoclonal populations of B, T lymphocytes. J Exp Med 194:1349–1359

    PubMed  Google Scholar 

  • Dang H, Geiser AG, Letterio JJ, Nakabayashi T, Kong L, Fernandes G, Talal N (1995) SLE-like autoantibodies and Sjogren’s syndrome-like lympho proliferation in TGF beta knockout mice. J Immunol 155:3205–3212

    PubMed  CAS  Google Scholar 

  • Das MR, Cohen A, Zamvil SS, Offner H, Kuchroo VK (1996) Prior exposure to superantigen can inhibit or exacerbate autoimmune encephalomyelitis: T-cell repertoire engaged by the autoantigen determines clinical outcome. J Neuroimmunol 71:3–10

    PubMed  CAS  Google Scholar 

  • Derbinski J, Schulte A, Kyewski B, Klein L (2001) Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat Immunol 2:1032–1039

    Article  PubMed  CAS  Google Scholar 

  • Dujardin HC, Burlen-Defranoux O, Boucontet L, Vieira P, Cumano A, Bandeira A (2004) Regulatory potential and control of Foxp3 expression in newborn CD4+ T cells. Proc Natl Acad Sci U S A. 101:14473–14478

    Article  PubMed  CAS  Google Scholar 

  • Elliott BE, Nagy ZA, Takacs BJ, Ben-Neriah Y, Givol D (1980) Antigen-binding receptors on T cells from long-term MLR. evidence of binding sites for allogeneic and self-MHC products. Immunogenetics 11:177–190

    Article  PubMed  CAS  Google Scholar 

  • Fantini MC, Becker C, Monteleone G, Pallone F, Galle PR, Neurath MF (2004) Cutting edge: TGF-beta induces a regulatory phenotype in CD4+CD25− T cells through Foxp3 induction and down-regulation of Smad7. J Immunol 172:5149–5153

    PubMed  CAS  Google Scholar 

  • Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4:330–336

    Article  PubMed  CAS  Google Scholar 

  • Forsgren S, Dahl U, Soderstrom A, Holmberg D, Matsunaga T (1991) The phenotype of lymphoid cells and thymic epithelium correlates with development of autoimmune insulitis in NOD in equilibrium with C57BL/6 allophenic chimeras. Proc Natl Acad Sci U S A 88:9335–9339

    PubMed  CAS  Google Scholar 

  • Fukaura H, Kent SC, Pietrusewicz MJ, Khoury SJ, Weiner HL, Hafler DA (1996) Induction of circulating myelin basic protein and proteolipid protein-specific transforming growth factor-beta1-secreting Th3 T cells by oral administration of myelin in multiple sclerosis patients. J Clin Invest 98:70–77

    Article  PubMed  CAS  Google Scholar 

  • Gavin MA, Bevan MJ (1995) Increased peptide promiscuity provides a rationale for the lack of N regions in the neonatal T cell repertoire. Immunity 3:793–800

    Article  PubMed  CAS  Google Scholar 

  • Gavin MA, Clarke SR, Negrou E, Gallegos A, Rudensky A (2002) Homeostasis and anergy of CD4(+)CD25(+) suppressor T cells in vivo. Nat Immunol 3:33–41

    PubMed  CAS  Google Scholar 

  • Gerling IC, Serreze DV, Christianson SW, Leiter EH (1992) Intrathymic islet cell transplantation reduces beta-cell autoimmunity and prevents diabetes in NOD/Lt mice. Diabetes 41:1672–1676

    PubMed  CAS  Google Scholar 

  • Gotter J, Brors B, Hergenhahn M, Kyewski B (2004) Medullary epithelial cells of the human thymus express a highly diverse selection of tissue-specific genes colocalized in chromosomal clusters. J Exp Med 199:155–166

    Article  PubMed  CAS  Google Scholar 

  • Graca L, Le Moine A, Cobbold SP, Waldmann H (2003) Dominant transplantation tolerance. Opinion. Curr Opin Immunol 15:499–506

    CAS  Google Scholar 

  • Graca L, Le Moine A, Lin CY, Fairchild PJ, Cobbold SP, Waldmann H (2004) Donor-specific transplantation tolerance: the paradoxical behavior of CD4+CD25+ T cells. Proc Natl Acad Sci U S A 101:10122–10126

    Article  PubMed  CAS  Google Scholar 

  • Greenwood BM (1968) Autoimmune disease and parasitic infections in Nigerians. Lancet 2:380–382

    PubMed  CAS  Google Scholar 

  • Group EAS (2000) Variation and trends in incidence of childhood diabetes in Europe. EURODIAB ACE Study Group. Lancet 355:873–876

    Google Scholar 

  • Gruchalla RS, Streilein JW (1982) Analysis of neonatally induced tolerance of H-2 alloantigens. II. Failure to detect alloantigen-specific T-lymphocyte precursors and suppressors. Immunogenetics 15:111–127

    Article  PubMed  CAS  Google Scholar 

  • Gullo CA, Teoh G (2004) Heat shock proteins: to present or not, that is the question. Immunol Lett 94:1–10

    Article  PubMed  CAS  Google Scholar 

  • Harris DE, Cairns L, Rosen FS, Borel Y (1982) A natural model of immunologic tolerance. Tolerance to murine C5 is mediated by T cells, and antigen is required to maintain unresponsiveness. J Exp Med 156:567–584

    Article  PubMed  CAS  Google Scholar 

  • Henry C, Jerne NK (1968) Competition of 19S and 7S antigen receptors in the regulation of the primary immune response. J Exp Med 128:133–152

    Article  PubMed  CAS  Google Scholar 

  • Honey K, Cobbold SP, Waldmann H (2000) Dominant tolerance and linked suppression induced by therapeutic antibodies do not depend on Fas-FasL interactions. Transplantation 69:1683–1689

    PubMed  CAS  Google Scholar 

  • Hori S, Carvalho TL, Demengeot J (2002a) CD25+CD4+ regulatory T cells suppress CD4+ T cell-mediated pulmonary hyperinflammation driven by Pneumocystis carinii in immunodeficient mice. Eur J Immunol 32:1282–1291

    PubMed  CAS  Google Scholar 

  • Hori S, Haury M, Lafaille JJ, Demengeot J, Coutinho A (2002b) Peripheral expansion of thymus-derived regulatory cells in anti-myelin basic protein T cell receptor transgenic mice. Eur J Immunol 32:3729–3735

    PubMed  CAS  Google Scholar 

  • Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299:1057–1061

    Article  PubMed  CAS  Google Scholar 

  • Jiang S, Camara N, Lombardi G, Lechler RI (2003) Induction of allopeptide-specific human CD4+CD25+ regulatory T cells ex vivo. Blood 102:2180–2186

    PubMed  CAS  Google Scholar 

  • Jolicoeur C, Hanahan D, Smith KM (1994) T-cell tolerance toward a transgenic beta-cell antigen and transcription of endogenous pancreatic genes in thymus. Proc Natl Acad Sci U S A 91:6707–6711

    PubMed  CAS  Google Scholar 

  • Jordan MS, Boesteanu A, Reed AJ, Petrone AL, Holenbeck AE, Lerman MA, Naji A, Caton AJ (2001) Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat Immunol 2:301–306

    Article  PubMed  CAS  Google Scholar 

  • Kalliomaki M, Salminen S, Arvilommi H, Kero P, Koskinen P, Isolauri E (2001) Probiotics in primary prevention of atopic disease: a randomised placebo-controlled trial. Lancet 357:1076–1079

    Article  PubMed  CAS  Google Scholar 

  • Kappler JW, Roehm N, Marrack P (1987) T cell tolerance by clonal elimination in the thymus. Cell 49:273–280

    PubMed  CAS  Google Scholar 

  • Khattri R, Cox T, Yasayko SA, Ramsdell F (2003) An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol 4:337–342

    Article  PubMed  CAS  Google Scholar 

  • Kisielow P, Bluthmann H, Staerz UD, Steinmetz M, von Boehmer H (1988) Tolerance in T-cell-receptor transgenic mice involves deletion of nonmature CD4+8+ thymocytes. Nature 333:742–746

    Article  PubMed  CAS  Google Scholar 

  • Klein L, Kyewski B (2000) Self-antigen presentation by thymic stromal cells: a subtle division of labor. Curr Opin Immunol 12:179–186

    Article  PubMed  CAS  Google Scholar 

  • Kojima A, Prehn RT (1981) Genetic susceptibility to post-thymectomy autoimmune diseases in mice. Immunogenetics 14:15–27

    Article  PubMed  CAS  Google Scholar 

  • Komai-Koma M, Jones L, Ogg GS, Xu D, Liew FY (2004) TLR2 is expressed on activated T cells as a costimulatory receptor. Proc Natl Acad Sci U S A 101:3029–3034

    Article  PubMed  CAS  Google Scholar 

  • Kurtzke JF (1995) MS epidemiology world wide. One view of current status. Acta Neurol Scand Suppl 161:23–33

    PubMed  CAS  Google Scholar 

  • Langman RE, Cohn M (1992) What is the selective pressure that maintains the gene loci encoding the antigen receptors of T, B cells? A hypothesis. Immunol Cell Biol 70:397–404

    PubMed  CAS  Google Scholar 

  • Leibowitz U, Antonovsky A, Medalie JM, Smith HA, Halpern L, Alter M (1966) Epidemiological study of multiple sclerosis in Israel. II. Multiple sclerosis and level of sanitation. J Neurol Neurosurg Psychiatry 29:60–68

    Article  PubMed  CAS  Google Scholar 

  • Lerman MA, Larkin J 3rd, Cozzo C, Jordan MS, Caton AJ (2004) CD4+ CD25+ regulatory T cell repertoire formation in response to varying expression of a neo-self-antigen. J Immunol 173:236–244

    PubMed  CAS  Google Scholar 

  • Lohse AW, Dinkelmann M, Kimmig M, Herkel J, Meyer zum Buschenfelde KH (1996) Estimation of the frequency of self-reactive T cells in health and inflammatory diseases by limiting dilution analysis and single cell cloning. J Autoimmun 9:667–675

    Article  PubMed  CAS  Google Scholar 

  • Marrack P, Winslow GM, Choi Y, Scherer M, Pullen A, White J, Kappler JW (1993) The bacterial and mouse mammary tumor virus superantigens; two different families of proteins with the same functions. Immunol Rev 131:79–92

    PubMed  CAS  Google Scholar 

  • Mason D (1998) A very high level of crossreactivity is an essential feature of the T-cell receptor. Immunol Today 19:395–404

    Article  PubMed  CAS  Google Scholar 

  • Matricardi PM, Rosmini F, Ferrigno L, Nisini R, Rapicetta M, Chionne P, Stroffolini T, Pasquini P, D’Amelio R (1997) Cross-sectional retrospective study of prevalence of atopy among Italian military students with antibodies against hepatitis A virus. BMJ 314:999–1003

    PubMed  CAS  Google Scholar 

  • Matricardi PM, Rosmini F, Riondino S, Fortini M, Ferrigno L, Rapicetta M, Bonini S (2000) Exposure to foodborne and orofecal microbes versus airborne viruses in relation to atopy and allergic asthma: epidemiological study. BMJ 320:412–417

    Article  PubMed  CAS  Google Scholar 

  • Maynard-Smith J, Szathmary E (1995) The major transitions in evolution. Oxford. Freeman & Co.

    Google Scholar 

  • Medzhitov R, Janeway CA Jr (2000) How does the immune system distinguish self from nonself? Semin Immunol 12:185–188; discussion 257-344

    Article  PubMed  CAS  Google Scholar 

  • Mittrucker HW, Kaufmann SH (2004) Mini-review: regulatory T cells and infection: suppression revisited. Eur J Immunol 34:306–312

    PubMed  Google Scholar 

  • Modigliani Y, Coutinho G, Burlen-Defranoux O, Coutinho A, Bandeira A (1994) Differential contribution of thymic outputs and peripheral expansion in the development of peripheral T cell pools. Eur J Immunol 24:1223–1227

    PubMed  CAS  Google Scholar 

  • Modigliani Y, Thomas-Vaslin V, Bandeira A, Coltey M, Le Douarin NM, Coutinho A, Salaun J (1995) Lymphocytes selected in allogeneic thymic epithelium mediate dominant tolerance toward tissue grafts of the thymic epithelium haplotype. Proc Natl Acad Sci U S A 92:7555–7559

    PubMed  CAS  Google Scholar 

  • Modigliani Y, Coutinho A, Pereira P, Le Douarin N, Thomas-Vaslin V, Burlen-Defranoux O, Salaun J, Bandeira A (1996a) Establishment of tissue-specific tolerance is driven by regulatory T cells selected by thymic epithelium. Eur J Immunol 26:1807–1815

    PubMed  CAS  Google Scholar 

  • Modigliani Y, Bandeira A, Coutinho A (1996b) A model for developmentally acquired thymus-dependent tolerance to central and peripheral antigens. Immunol Rev 149:155–120

    PubMed  CAS  Google Scholar 

  • Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL (1986) Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136:2348–2357

    PubMed  CAS  Google Scholar 

  • Mouthon L, Nobrega A, Nicolas N, Kaveri SV, Barreau C, Coutinho A, Kazatchkine MD (1995) Invariance and restriction toward a limited set of self-antigens characterize neonatal IgM antibody repertoires and prevail in autoreactive repertoires of healthy adults. Proc Natl Acad Sci U S A 92:3839–3843

    PubMed  CAS  Google Scholar 

  • Nishimura H, Minato N, Nakano T, Honjo T (1998) Immunological studies on PD-1 deficient mice: implication of PD-1 as a negative regulator for B cell responses. Int Immunol 10:1563–1572

    Article  PubMed  CAS  Google Scholar 

  • Nishimura H, Nose M, Hiai H, Minato N, Honjo T (1999) Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif carrying immuno receptor. Immunity 11:141–151

    Article  PubMed  CAS  Google Scholar 

  • Nishimura H, Okazaki T, Tanaka Y, Nakatani K, Hara M, Matsumori A, Sasayama S, Mizoguchi A, Hiai H, Minato N, Honjo T (2001) Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science 291:319–322

    Article  PubMed  CAS  Google Scholar 

  • Nobrega A, Haury M, Grandien A, Malanchere E, Sundblad A, Coutinho A (1993) Global analysis of antibody repertoires. II. Evidence for specificity, self-selection and the immunological “homunculus” of antibodies in normal serum. Eur J Immunol 23:2851–2859

    PubMed  CAS  Google Scholar 

  • Ohki H, Martin C, Corbel C, Coltey M, Le Douarin NM (1987) Tolerance induced by thymic epithelial grafts in birds. Science 237:1032–1035

    PubMed  CAS  Google Scholar 

  • Ohki H, Martin C, Coltey M, Le Douarin NM (1988) Implants of quail thymic epithelium generate permanent tolerance in embryonically constructed quail/chick chimeras. Development 104:619–630

    PubMed  CAS  Google Scholar 

  • Oldstone MB, Dixon FJ (1972) Inhibition of antibodies to nuclear antigen and to DNA in New Zealand mice infected with lactate dehydrogenase virus. Science 175:784–786

    PubMed  CAS  Google Scholar 

  • Oldstone MB, Ahmed R, Salvato M (1990) Viruses as therapeutic agents. II. Viral reassortants map prevention of insulin-dependent diabetes mellitus to the small RNA of lymphocytic choriomeningitis virus. J Exp Med 171:2091–2100

    PubMed  CAS  Google Scholar 

  • Onizuka S, Tawara I, Shimizu J, Sakaguchi S, Fujita T, Nakayama E (1999) Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor alpha) monoclonal antibody. Cancer Res 59:3128–3133

    PubMed  CAS  Google Scholar 

  • Pae HO, Oh GS, Choi BM, Chae SC, Chung HT (2003) Differential expressions of heme oxygenase-1 gene in CD25− and CD25+ subsets of human CD4+ T cells. Biochem Biophys Res Commun 306:701–705

    Article  PubMed  CAS  Google Scholar 

  • Park HB, Paik DJ, Jang E, Hong S, Youn J (2004) Acquisition of anergic and suppressive activities in transforming growth factor-beta-costimulated CD4+CD25− T cells. Int Immunol 16:1203–1213

    PubMed  CAS  Google Scholar 

  • Patel DM, Arnold PY, White GA, Nardella JP, Mannie MD (1999) Class IIMHC/peptide complexes are released from APC and are acquired by T cell responders during specific antigen recognition. J Immunol 163:5201–5210

    PubMed  CAS  Google Scholar 

  • Pereira P, Larsson EL, Forni L, Bandeira A, Coutinho A (1985) Natural effector T lymphocytes in normal mice. Proc Natl Acad Sci U S A 82:7691–7695

    PubMed  CAS  Google Scholar 

  • Pitkanen J, Peterson P (2003) Autoimmune regulator: from loss of function to autoimmunity. Genes Immun 4:12–21

    PubMed  CAS  Google Scholar 

  • Posselt AM, Barker CF, Tomaszewski JE, Markmann JF, Choti MA, Naji A (1990) Induction of donor-specific unresponsiveness by intrathymic islet transplantation. Science 249:1293–1295

    PubMed  CAS  Google Scholar 

  • Qin S, Cobbold SP, Pope H, Elliott J, Kioussis D, Davies J, Waldmann H (1993) “Infectious” transplantation tolerance. Science 259:974–977

    PubMed  CAS  Google Scholar 

  • Ramsey C, Winqvist O, Puhakka L, Halonen M, Moro A, Kampe O, Eskelin P, Pelto-Huikko M, Peltonen L (2002) Aire deficient mice develop multiple features of APECED phenotype and show altered immune response. Hum Mol Genet 11:397–409

    PubMed  CAS  Google Scholar 

  • Read S, Malmstrom V, Powrie F (2000) Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J Exp Med 192:295–302

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez D, Keller AC, Faquim-Mauro EL, de Macedo MS, Cunha FQ, Lefort J, Vargaftig BB, Russo M (2003) Bacterial lipopolysaccharide signaling through Toll-like receptor 4 suppresses asthma-like responses via nitric oxide synthase 2 activity. J Immunol 171:1001–1008

    PubMed  CAS  Google Scholar 

  • Rose NR, Mackay IR (2000) Molecular mimicry: a critical look at exemplary instances in human diseases. Cell Mol Life Sci 57:542–551

    PubMed  CAS  Google Scholar 

  • Roser BJ (1989) Cellular mechanisms in neonatal and adult tolerance. Immunol Rev 107:179–202

    PubMed  CAS  Google Scholar 

  • Sakaguchi S (2004) Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 22:531–562

    Article  PubMed  CAS  Google Scholar 

  • Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M (1995) Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155:1151–1164

    PubMed  CAS  Google Scholar 

  • Salaun J, Bandeira A, Khazaal I, Calman F, Coltey M, Coutinho A, Le Douarin NM (1990) Thymic epithelium tolerizes for histocompatibility antigens. Science 247:1471–1474

    PubMed  CAS  Google Scholar 

  • Salaun J, Simmenauer N, Belo P, Coutinho A, Le Douarin NM (2002) Grafts of supplementary thymuses injected with allogeneic pancreatic islets protect nonobese diabetic mice against diabetes. Proc Natl Acad Sci U S A 99:874–877

    Article  PubMed  CAS  Google Scholar 

  • Seddon B, Mason D (1999) Peripheral autoantigen induces regulatory T cells that prevent autoimmunity. J Exp Med 189:877–882

    PubMed  CAS  Google Scholar 

  • Shevach EM (2000) Regulatory T cells in autoimmmunity. Annu Rev Immunol 18:423–449

    Article  PubMed  CAS  Google Scholar 

  • Shevach EM (2002) CD4+ CD25+ suppressor T cells: more questions than answers. Nat Rev Immunol 2:389–400

    PubMed  CAS  Google Scholar 

  • Shih FF, Mandik-Nayak L, Wipke BT, Allen PM (2004) Massive Thymic deletion results in systemic autoimmunity through elimination of CD4+ CD25+ T regulatory cells. J Exp Med 199:323–335

    Article  PubMed  CAS  Google Scholar 

  • Shimizu J, Yamazaki S, Sakaguchi S (1999) Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J Immunol 163:5211–5218

    PubMed  CAS  Google Scholar 

  • Shlomchik MJ, Marshak-Rothstein A, Wolfowicz CB, Rothstein TL, Weigert MG (1987) The role of clonal selection and somatic mutation in autoimmunity. Nature 328:805–811

    Article  PubMed  CAS  Google Scholar 

  • Shull MM, Ormsby I, Kier AB, Pawlowski S, Diebold RJ, Yin M, Allen R, Sidman C, Proetzel G, Calvin D et al (1992) Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 359:693–699

    Article  PubMed  CAS  Google Scholar 

  • Strachan DP (1989) Hay fever, hygiene, and household size. BMJ 299:1259–1260

    PubMed  CAS  Google Scholar 

  • Suri-Payer E, Amar AZ, McHugh R, Natarajan K, Margulies DH, Shevach EM (1999) Post-thymectomy autoimmune gastritis: fine specificity and pathogenicity of anti-H/K ATPase-reactive T cells. Eur J Immunol 29:669–677

    Article  PubMed  CAS  Google Scholar 

  • Taniguchi M, Harada M, Kojo S, Nakayama T, Wakao H (2003) The regulatory role of Valpha14 NKT cells in innate and acquired immune response. Annu Rev Immunol 21:483–513

    Article  PubMed  CAS  Google Scholar 

  • Thomas-Vaslin V, Damotte D, Coltey M, Le Douarin NM, Coutinho A, Salaun J (1997) Abnormal T cell selection on nod thymic epitheliumis sufficient to induce autoimmune manifestations in C57BL/6 athymic nude mice. Proc Natl Acad Sci U S A 94:4598–4603

    Article  PubMed  CAS  Google Scholar 

  • Thompson C, Powrie F (2004) Regulatory T cells. Curr Opin Pharmacol 4:408–414

    PubMed  CAS  Google Scholar 

  • Thornton AM, Shevach EM (2000) Suppressor effector function of CD4+CD25+ immunoregulatory T cells is antigen nonspecific. J Immunol 164:183–190

    PubMed  CAS  Google Scholar 

  • Tsang JY, Chai JG, Lechler R (2003) Antigen presentation by mouse CD4+ T cells involving acquired MHC class II: peptide complexes: another mechanism to limit clonal expansion? Blood 101:2704–2710

    Article  PubMed  CAS  Google Scholar 

  • Turvey SE, Hara M, Morris PJ, Wood KJ (1999) Mechanisms of tolerance induction after intrathymic islet injection: determination of the fate of alloreactive thymocytes. Transplantation 68:30–39

    PubMed  CAS  Google Scholar 

  • Unger WW, Jansen W, Wolvers DA, van Halteren AG, Kraal G, Samsom JN (2003) Nasal tolerance induces antigen-specific CD4+CD25− regulatory T cells that can transfer their regulatory capacity to naive CD4+ T cells. Int Immunol 15:731–739

    Article  PubMed  CAS  Google Scholar 

  • Van den Berg CW, Hofhuis FM, Rademaker PM, van Dijk H (1991) Induction of active immunological hypo/non-responsiveness to C5 in adult C5-deficient DBA/2 mice. Immunology 74:380–385

    PubMed  Google Scholar 

  • Vigouroux S, Yvon E, Wagner HJ, Biagi E, Dotti G, Sili U, Lira C, Rooney CM, Brenner MK (2003) Induction of antigen-specific regulatory T cells following over expression of a Notch ligand by human B lymphocytes. J Virol 77:10872–10880

    Article  PubMed  CAS  Google Scholar 

  • Von Boehmer H, Teh HS, Kisielow P (1989) The thymus selects the useful, neglects the useless and destroys the harmful. Immunol Today 10:57–61

    Google Scholar 

  • Waldmann H (2003) The new immunosuppression. Curr Opin Chem Biol 7:476–480

    Article  PubMed  CAS  Google Scholar 

  • Walker MR, Mannie MD (2002) Acquisition of functional MHC class II/peptide complexes by T cells during thymic development and CNS-directed pathogenesis. Cell Immunol 218:13–25

    Article  PubMed  CAS  Google Scholar 

  • Weigle WO (1980) Analysis of autoimmunity through experimental models of thyroiditis and allergic encephalomyelitis. Adv Immunol 30:159–273

    PubMed  CAS  Google Scholar 

  • Weiner HL (2001) Oral tolerance: immune mechanisms and the generation of Th3-type TGF-beta-secreting regulatory cells. Microbes Infect 3:947–954

    Article  PubMed  CAS  Google Scholar 

  • Wekerle H (1992) Myelin specific, autoaggressive T cell clones in the normal immune repertoire: their nature and their regulation. Int Rev Immunol 9:231–241

    Article  PubMed  CAS  Google Scholar 

  • Wekerle H, Bradl M, Linington C, Kaab G, Kojima K (1996) The shaping of the brain specific T lymphocyte repertoire in the thymus. Immunol Rev 149:231–243

    PubMed  CAS  Google Scholar 

  • Wills-Karp M, Santeliz J, Karp CL (2001) The germless theory of allergic disease: revisiting the hygiene hypothesis. Nat Rev Immunol 1:69–75

    Article  PubMed  CAS  Google Scholar 

  • Wilson DB, Wilson DH, Schroder K, Pinilla C, Blondelle S, Houghten RA, Garcia KC (2004) Specificity and degeneracy of T cells. Mol Immunol 40:1047–1055

    Article  PubMed  CAS  Google Scholar 

  • Wise MP, Bemelman F, Cobbold SP, Waldmann H (1998) Linked suppression of skin graft rejection can operate through indirect recognition. J Immunol 161:5813–5816

    PubMed  CAS  Google Scholar 

  • Wood KJ, Sakaguchi S (2003) Regulatory T cells in transplantation tolerance. Nat Rev Immunol 3:199–210

    Article  PubMed  CAS  Google Scholar 

  • Wu HY, Weiner HL (2003) Oral tolerance. Immunol Res 28:265–284

    PubMed  Google Scholar 

  • Yaswen L, Kulkarni AB, Fredrickson T, Mittleman B, Schiffman R, Payne S, Longenecker G, Mozes E, Karlsson S (1996) Autoimmune manifestations in the transforming growth factor-beta 1 knockout mouse. Blood 87:1439–1445

    PubMed  CAS  Google Scholar 

  • Yazdanbakhsh M, Kremsner PG, van Ree R (2002) Allergy, parasites, and the hygiene hypothesis. Science 296:490–494

    Article  PubMed  CAS  Google Scholar 

  • Zal T, Volkmann A, Stockinger B (1994) Mechanisms of tolerance induction in major histocompatibility complex class II-restricted T cells specific for a blood-borne self-antigen. J Exp Med 180:2089–2099

    Article  PubMed  CAS  Google Scholar 

  • Zheng SG, Wang JH, Gray JD, Soucier H, Horwitz DA (2004) Natural and induced CD4+CD25+ cells educate CD4+CD25− cells to develop suppressive activity: the role of IL-2, TGF-beta, and IL-10. J Immunol 172:5213–5221

    PubMed  CAS  Google Scholar 

  • Zelenay S, Lopes-Carvalho T, Caramalho I, Moraes-Fontes MF, Rebelo M, Demengeot J (2005) Foxp3+CD25−CD4 T cells constitute a reservoir of committed regulatory cells that regain CD25 expression upon homeostatic expansion. Proc Natl Acad Sci U S A 102:4091–4096

    Article  PubMed  CAS  Google Scholar 

  • Zinkernagel RM, Callahan GN, Althage A, Cooper S, Klein PA, Klein J (1978) On the thymus in the differentiation of “H-2 self-recognition” by T cells: evidence for dual recognition? J Exp Med 147:882–896

    PubMed  CAS  Google Scholar 

  • Zuany-Amorim C, Sawicka E, Manlius C, Le Moine A, Brunet LR, Kemeny DM, Bowen G, Rook G, Walker C (2002) Suppression of airway eosinophilia by killed Mycobacterium vaccae-induced allergen-specific regulatory T-cells. Nat Med 8:625–629

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Coutinho, A., Caramalho, I., Seixas, E., Demengeot, J. (2005). Thymic Commitment of Regulatory T Cells Is a Pathway of TCR-Dependent Selection That Isolates Repertoires Undergoing Positive or Negative Selection. In: Compans, R., et al. CD4+CD25+ Regulatory T Cells: Origin, Function and Therapeutic Potential. Current Topics in Microbiology and Immunology, vol 293. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27702-1_3

Download citation

Publish with us

Policies and ethics