Skip to main content

Shape Compression using Spherical Geometry Images

  • Conference paper
Advances in Multiresolution for Geometric Modelling

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Summary

We recently introduced an algorithm for spherical parametrization and remeshing, which allows resampling of a genus-zero surface onto a regular 2D grid, a spherical geometry image. These geometry images offer several advantages for shape compression. First, simple extension rules extend the square image domain to cover the infinite plane, thereby providing a globally smooth surface parametrization. The 2D grid structure permits use of ordinary image wavelets, including higher-order wavelets with polynomial precision. The coarsest wavelets span the entire surface and thus encode the lowest frequencies of the shape. Finally, the compression and decompression algorithms operate on ordinary 2D arrays, and are thus ideally suited for hardware acceleration. In this paper, we detail two wavelet-based approaches for shape compression using spherical geometry images, and provide comparisons with previous compression schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alliez, P., and Desbrun, M.: Progressive encoding for lossless transmission of 3D meshes. Proc. ACM SIGGRAPH 2001.

    Google Scholar 

  2. Alliez, P., and Desbrun, M.: Valence-driven connectivity encoding for 3D meshes. Proc. Eurographics 2001.

    Google Scholar 

  3. Alliez, P., and Gotsman, C.: Recent advances in compression of 3D meshes. Advances in Multiresolution for Geometric Modelling, N. A. Dodgson, M. S. Floater, and M. A. Sabin (eds.), Springer, 2004, pp. 3–26 (this book).

    Google Scholar 

  4. Antonini, M., Barlaud, M., Mathieu, P., and Daubechies, I.: Image coding using wavelet transform. IEEE Transactions on Image Processing, 205–220, 1992.

    Google Scholar 

  5. Attene, M., Falcidieno, B., Spagnuolo, M., and Rossignac, J.: SwingWrapper: Retiling triangle meshes for better EdgeBreaker compression. ACM Transactions on Graphics, to appear.

    Google Scholar 

  6. Briceño, H., Sander, P., McMillan, L., Gortler, S., and Hoppe, H.: Geometry videos. Symposium on Computer Animation 2003.

    Google Scholar 

  7. Davis, G.: Wavelet image compression construction kit. http://www.geoffdavis.net/dartmouth/wavelet/wavelet.html (1996).

    Google Scholar 

  8. Deering, M.: Geometry compression. Proc. ACM SIGGRAPH 1995, 13–20.

    Google Scholar 

  9. Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsbery, M., and Stuetzle, W.: Multiresolution analysis of arbitrary meshes. Proc. ACM SIGGRAPH 1995, 173–182.

    Google Scholar 

  10. Gotsman, C., Gumhold, S., and Kobbelt, L.: Simplification and compression of 3D meshes. In Tutorials on Multiresolution in Geometric Modelling, A. Iske, E. Quak, M. S. Floater (eds.), Springer, 2002, pp. 319–361.

    Google Scholar 

  11. Gu, X., Gortler, S., and Hoppe, H.: Geometry images. Proc. ACM SIGGRAPH 2002, 355–361.

    Google Scholar 

  12. Gumhold, S., and Strasser, W.: Real time compression of triangle mesh connectivity. Proc. ACM SIGGRAPH 1998, 133–140.

    Google Scholar 

  13. Guskov, I., Vidimce, K., Sweldens, W., and Schröder, P.: Normal meshes. Proc. ACM SIGGRAPH 2000, 95–102.

    Google Scholar 

  14. Hoppe, H.: Progressive meshes. Proc. ACM SIGGRAPH 1996, 99–108.

    Google Scholar 

  15. Karni, Z., and Gotsman, C.: Spectral compression of mesh geometry. Proc. ACM SIGGRAPH 2000, 279–286.

    Google Scholar 

  16. Khodakovsky, A., Schröder, P., and Sweldens, W.: Progressive geometry compression. Proc. ACM SIGGRAPH 2000.

    Google Scholar 

  17. Khodakovsky, A., and Guskov, I.: Normal mesh compression. Geometric Modeling for Scientific Visualization, Springer-Verlag, Heidelberg, Germany (2002).

    Google Scholar 

  18. Khodakovsky, A., Litke, N., and Schröder, P.: Globally smooth parameterizations with low distortion. Proc. ACM SIGGRAPH 2003.

    Google Scholar 

  19. Lounsbery, M., DeRose, T., and Warren, J.: Multiresolution analysis for surfaces of arbitrary topological type. ACM Transactions on Graphics, 16(1), 34–73 (1997).

    Article  Google Scholar 

  20. Praun, E., and Hoppe, H.: Spherical parametrization and remeshing. Proc. ACM SIGGRAPH 2003, 340–349.

    Google Scholar 

  21. Rossignac, J.: EdgeBreaker: Connectivity compression for triangle meshes. IEEE Trans. on Visualization and Computer Graphics, 5(1), 47–61 (1999).

    Article  Google Scholar 

  22. Rossignac, J.: 3D mesh compression. Chapter in The Visualization Handbook, C. Johnson and C. Hanson, (eds.), Academic Press, to appear (2003).

    Google Scholar 

  23. Sander, P., Wood, Z., Gortler, S., Snyder J., and Hoppe, H.: Multi-chart geometry images. Symposium on Geometry Processing 2003, 157–166.

    Google Scholar 

  24. Schröder, P., and Sweldens, W.: Spherical wavelets: Efficiently representing functions on the sphere. Proc. ACM SIGGRAPH 1995, 161–172.

    Google Scholar 

  25. Shapiro, A., and Tal, A.: Polygon realization for shape transformation. The Visual Computer, 14(8–9), 429–444 (1998).

    Article  Google Scholar 

  26. Sorkine, O., Cohen-Or, D., and Toledo, S.: High-pass quantization for mesh encoding. Symposium on Geometry Processing, 2003.

    Google Scholar 

  27. Taubin, G., Gueziec, A., Horn, W., and Lazarus, F.: Progressive forest split compression. Proc. ACM SIGGRAPH 1998.

    Google Scholar 

  28. Touma, C., and Gotsman, C.: Triangle mesh compression. Graphics Interface 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hoppe, H., Praun, E. (2005). Shape Compression using Spherical Geometry Images. In: Dodgson, N.A., Floater, M.S., Sabin, M.A. (eds) Advances in Multiresolution for Geometric Modelling. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26808-1_2

Download citation

Publish with us

Policies and ethics