Skip to main content

Extracellular Chaperones

  • Chapter
  • First Online:
Topics in Current Chemistry

Part of the book series: Topics in Current Chemistry

  • 147 Accesses

Abstract

The maintenance of the levels and correct folding state of proteins (proteostasis) is a fundamental prerequisite for life. Life has evolved complex mechanisms to maintain proteostasis and many of these that operate inside cells are now well understood. The same cannot yet be said of corresponding processes in extracellular fluids of the human body, where inappropriate protein aggregation is known to underpin many serious diseases such as Alzheimer’s disease, type II diabetes and prion diseases. Recent research has uncovered a growing family of abundant extracellular chaperones in body fluids which appear to selectively bind to exposed regions of hydrophobicity on misfolded proteins to inhibit their toxicity and prevent them from aggregating to form insoluble deposits. These extracellular chaperones are also implicated in clearing the soluble, stabilized misfolded proteins from body fluids via receptor-mediated endocytosis for subsequent lysosomal degradation. Recent work also raises the possibility that extracellular chaperones may play roles in modulating the immune response. Future work will better define the in vivo functions of extracellular chaperones in proteostasis and immunology and pave the way for the development of new treatments for serious diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Sitia R, Braakman I (2003) Quality control in the endoplasmic reticulum protein factory. Nature 426:891–894

    PubMed  CAS  ADS  Google Scholar 

  2. Ker YC, Chen RH (1998) Stress-induced conformational changes and gelation of soy protein isolate suspensions. Lebenson Wiss Technol 31:107–113

    CAS  Google Scholar 

  3. Bucciantini M et al (2002) Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416:507–510

    PubMed  CAS  ADS  Google Scholar 

  4. Buxbaum J, Gallo G (1999) Nonamyloidotic monoclonal immunoglobulin deposition disease. Light-chain, heavy-chain, and light- and heavy-chain deposition diseases. Hematol Oncol Clin North Am 13:1235–1248

    PubMed  CAS  Google Scholar 

  5. Mullins RF et al (2000) Drusen associated with aging and age-related macular degeneration contain proteins common to extracellular deposits associated with atherosclerosis, elastosis, amyloidosis, and dense deposit disease. FASEB J 14:835–846

    PubMed  CAS  Google Scholar 

  6. Eustace BK et al (2004) Functional proteomic screens reveal an essential extracellular role for hsp90 alpha in cancer cell invasiveness. Nat Cell Biol 6:507–514

    PubMed  CAS  Google Scholar 

  7. Srivastava PK et al (1998) Heat shock proteins come of age: primitive functions acquire new roles in an adaptive world. Immunity 8:657–665

    PubMed  CAS  Google Scholar 

  8. Srivastava P (2002) Roles of heat-shock proteins in innate and adaptive immunity. Nat Rev Immunol 2:185–194

    PubMed  MATH  CAS  Google Scholar 

  9. Humphreys DT et al (1999) Clusterin has chaperone-like activity similar to that of small heat shock proteins. J Biol Chem 274:6875–6881

    PubMed  CAS  Google Scholar 

  10. Wilson MR, Easterbrook-Smith SB (2000) Clusterin is a secreted mammalian chaperone. Trends Biochem Sci 25:95–98

    PubMed  CAS  Google Scholar 

  11. Ritossa F (1996) Discovery of the heat shock response. Cell Stress Chaperones 1:97–98

    PubMed  CAS  Google Scholar 

  12. Kozutsumi Y et al (1988) The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose regulated proteins. Nature 332:462–464

    PubMed  CAS  ADS  Google Scholar 

  13. Maki RG, Old LJ, Srivastava PK (1990) Human homologue of murine tumor rejection antigen Gp96: 5'-regulatory and coding regions and relationship to stress-induced proteins. Proc Natl Acad Sci USA 87:5658–5662

    PubMed  CAS  ADS  Google Scholar 

  14. Jeffery CJ (2003) Moonlighting proteins: old proteins learning new tricks. Trends Genet 19:415–417

    PubMed  CAS  Google Scholar 

  15. Saito K, Dai Y, Ohtsuka K (2005) Enhanced expression of heat shock proteins in gradually dying cells and their release from necrotically dead cells. Exp Cell Res 310:229–236

    PubMed  CAS  Google Scholar 

  16. Basu S et al (2000) Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappaB pathway. Int Immunol 12:1539–1546

    PubMed  CAS  Google Scholar 

  17. Feng H et al (2001) Stressed apoptotic tumor cells express heat shock proteins and elicit tumor-specific immunity. Blood 97:3503–3512

    Google Scholar 

  18. Gastpar R et al (2005) Heat shock protein 70 surface-positive tumor exosomes stimulate migratory and cytolytic activity of natural killer cells. Cancer Res 65:5238–5247

    PubMed  CAS  Google Scholar 

  19. Lancaster GI, Febbraio MA (2005) Exosome-dependent trafficking of HSP70: a novel secretory pathway for cellular stress proteins. J Biol Chem 280:23349–23355

    PubMed  CAS  Google Scholar 

  20. Korbelik M, Sun J, Cecic I (2005) Photodynamic therapy-induced cell surface expression and release of heat shock proteins: relevance for tumor response. Cancer Res 65:1018–1026

    PubMed  CAS  Google Scholar 

  21. Barreto A et al (2003) Stress-induced release of HSC70 from human tumours. Cell Immunol 222:97–104

    PubMed  CAS  Google Scholar 

  22. Henderson B (2010) Integrating the cell stress response: a new view of molecular chaperones as immunological and physiological homeostatic regulators. Cell Biochem Funct 28:1–14

    PubMed  CAS  Google Scholar 

  23. Binder RJ et al (2000) Heat shock protein gp96 induces maturation and migration of CD11c+ cells in vivo. J Immunol 165:6029–6035

    PubMed  CAS  Google Scholar 

  24. Singh-Jasuja H et al (2000) The heat shock protein gp96 induces maturation of dendritic cells and down-regulation of its receptor. Eur J Immunol 30:2211–2215

    PubMed  CAS  Google Scholar 

  25. Mellman I, Steinman RM (2001) Dendritic cells: specialized and regulated antigen processing machines. Cell 106:255–258

    PubMed  CAS  Google Scholar 

  26. Binder RJ, Han DK, Srivastava PK (2000) CD91: a receptor for heat shock protein gp96. Nat Immunol 1:151–155

    PubMed  CAS  Google Scholar 

  27. Binder RJ, Srivastava PK (2004) Essential role of CD91 in re-presentation of gp96-chaperoned peptides. Proc Natl Acad Sci USA 101:6128–6133

    PubMed  CAS  ADS  Google Scholar 

  28. Basu S et al (2001) CD91, a common receptor for heat shock proteins gp96, hsp90, hsp70 and calreticulin. Immunity 14:303–313

    PubMed  CAS  Google Scholar 

  29. Delneste Y et al (2002) Involvement of LOX-1 in dendritic cell mediated antigen cross-presentation. Immunity 17:353–362

    PubMed  CAS  Google Scholar 

  30. Thériault JR et al (2005) Extracellular HSP70 binding to cell surface receptors present on antigen-presenting cells and endothelial/epithelial cells. FEBS Lett 579:1951–1960

    PubMed  Google Scholar 

  31. Calderwood SK et al (2007) Cell surface receptors for molecular chaperones. Methods 43:199–206

    PubMed  CAS  Google Scholar 

  32. Berwin B et al (2004) SREC-I, a type F scavenger receptor, is an endocytic receptor for calreticulin. J Biol Chem 279:51250–51257

    PubMed  CAS  Google Scholar 

  33. Thériault JR, Adachi H, Calderwood SK (2006) Role of scavenger receptors in the binding and internalization of heat shock protein 70. J Immunol 177:8604–8611

    PubMed  Google Scholar 

  34. Vabulas RM, Wagner H, Schild H (2002) Heat shock proteins as ligands of toll-like receptors. Curr Top Microbiol Immunol 270:169–184

    PubMed  CAS  Google Scholar 

  35. Ramirez SR et al (2005) Glycoprotein 96-activated dendritic cells induce a CD8-biased T-cell response. Cell Stress Chaperones 10:221–229

    PubMed  CAS  Google Scholar 

  36. Binder RJ, Karimeddini D, Srivastava PK (2001) Adjuvanticity of alpha2-macroglobulin, an independent ligand for the heat shock protein receptor CD91. J Immunol 166:4968–4972

    PubMed  CAS  Google Scholar 

  37. Arnold-Schild D et al (1999) Receptor-mediated endocytosis of heat shock proteins by professional antigen-presenting cells. J Immunol 162:3757–3760

    PubMed  CAS  Google Scholar 

  38. Matsutake T, Srivastava PK (2000) CD91 is involved in MHC class II presentation of gp96 chaperoned peptides. In: Second international conference on heat shock proteins in immune response. Cell Stress Society International, Farmington, CT, USA

    Google Scholar 

  39. Wang XY et al (2007) Scavenger receptor-A negatively regulates antitumor immunity. Cancer Res 67:4996–5002

    PubMed  CAS  Google Scholar 

  40. Pockley AG, Muthana M, Calderwood SK (2008) The dual immunoregulatory roles of stress proteins. Trends Biochem Sci 33:71–79

    PubMed  CAS  Google Scholar 

  41. Medzhitov R, Janeway C (2000) Innate immune recognition: mechanisms and pathways. Immunol Rev 173:89–97

    PubMed  CAS  Google Scholar 

  42. Henderson B et al (2010) Caught with their PAMPs down? The extracellular signalling actions of molecular chaperones are not due to microbial contaminants. Cell Stress Chaperones 15:123–141

    PubMed  CAS  Google Scholar 

  43. Quintana FJ et al (2004) Inhibition of adjuvant-induced arthritis by DNA vaccination with the 70-kd or the 90-kd human heat-shock protein: immune cross-regulation with the 60-kd heat-shock protein. Arthritis Rheum 50:3712–3720

    PubMed  CAS  Google Scholar 

  44. Morton H, Rolfe B, Clunie GJ (1977) An early pregnancy factor detected in human serum by the rosette inhibition test. Lancet 1:394–397

    PubMed  CAS  Google Scholar 

  45. Noonan FP et al (1979) Early pregnancy factor is immunosuppressive. Nature 278:649–651

    PubMed  CAS  ADS  Google Scholar 

  46. Cavanagh AC, Morton H (1994) The purification of early-pregnancy factor to homogeneity from human platelets and identification as chaperonin 10. Eur J Biochem 222:551–560

    PubMed  CAS  Google Scholar 

  47. Young DB et al (1987) The 65 kDa antigen of mycobacteria – a common bacterial protein? Immunol Today 8:215–219

    CAS  Google Scholar 

  48. Young DB (1990) Chaperonins and the immune response. Semin Cell Biol 1:27–35

    PubMed  CAS  Google Scholar 

  49. Shinnick TM, Vodkin MH, Williams JC (1988) The Mycobacterium tuberculosis 65-kilodalton antigen is a heat shock protein which corresponds to common antigen and to the Escherichia coli GroEL protein. Infect Immun 56:446–451

    PubMed  CAS  Google Scholar 

  50. Chen W et al (1999) Human 60-kDa heat-shock protein: a danger signal to the innate immune system. J Immunol 162:3212–3219

    PubMed  CAS  Google Scholar 

  51. Bethke K et al (2002) Different efficiency of heat shock proteins (HSP) to activate human monocytes and dendritic cells: superiority of HSP60. J Immunol 169:6141–6148

    PubMed  CAS  Google Scholar 

  52. Asea A et al (2000) Hsp70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 6:435–442

    PubMed  CAS  Google Scholar 

  53. Wang Y et al (2002) Stimulation of Th1-polarizing cyto-kines, C-C chemokines, maturation of dendritic cells, and adjuvant function by the peptide binding fragment of heat shock protein 70. J Immunol 169:2422–2429

    PubMed  CAS  Google Scholar 

  54. Lehner T et al (2004) Functional domains of HSP70 stimulate generation of cytokines and chemokines, maturation of dendritic cells and adjuvanticity. Biochem Soc Trans 32:629–632

    PubMed  CAS  Google Scholar 

  55. Wendling U et al (2000) A conserved mycobacterial heat shock protein (hsp) 70 sequence prevents adjuvant arthritis upon nasal administration and induces IL-10-producing T cells that cross-react with the mammalian self-hsp70 homologue. J Immunol 164:2711–2717

    PubMed  CAS  Google Scholar 

  56. Prakken BJ et al (2001) Induction of IL-10 and inhibition of experimental arthritis are specific features of microbial heat shock proteins that are absent for other evolutionarily conserved immunodominant proteins. J Immunol 167:4147–4153

    PubMed  CAS  Google Scholar 

  57. Gross C et al (2003) Interaction of heat shock protein 70 peptide with NK cells involves the NK receptor CD94. Biol Chem 384:267–279

    PubMed  CAS  Google Scholar 

  58. Gross C et al (2003) Heat shock protein 70- reactivity is associated with increased cell surface density of CD94/CD56 on primary natural killer cells. Cell Stress Chaperones 8:348–360

    PubMed  CAS  Google Scholar 

  59. Michaelsson J et al (2002) A signal peptide derived from hsp60 binds HLA-E and interferes with CD94/NKG2A recognition. J Exp Med 196:1403–1414

    PubMed  CAS  Google Scholar 

  60. Hickman-Miller HD, Hildebrand WH (2004) The immune response under stress: the role of HSP-derived peptides. Trends Immunol 25:427–433

    PubMed  CAS  Google Scholar 

  61. Srivastava PK, DeLeo AB, Old LJ (1986) Tumour rejection antigens of chemically induced sarcomas of inbred mice. Proc Natl Acad Sci U S A 83:3407–3411

    PubMed  CAS  ADS  Google Scholar 

  62. Udono H, Srivastava PK (1993) Heat shock protein 70-associated peptides elicit specific cancer immunity. J Exp Med 178:1391–1396

    PubMed  CAS  Google Scholar 

  63. Basu S, Srivastava PK (1999) Calreticulin, a peptide-binding chaperone of the endoplasmic reticulum, elicits tumor- and peptide-specific immunity. J Exp Med 189:797–802

    PubMed  CAS  Google Scholar 

  64. Suto R, Srivastava PK (1995) A mechanism for the specific immunogenicity of heat shock protein-chaperoned peptides. Science 269:1585–1588

    PubMed  CAS  ADS  Google Scholar 

  65. Rivoltini L et al (2003) Human tumor-derived heat shock protein 96 mediates in vitro activation and in vivo expansion of melanoma- and colon carcinoma-specific T cells. J Immunol 171:3467–3474

    PubMed  CAS  Google Scholar 

  66. Maki RG et al (2007) A phase I pilot study of autologous heat shock protein vaccine HSPPC-96 in patients with resected pancreatic adenocarcinoma. Dig Dis Sci 52:1964–1972

    PubMed  CAS  Google Scholar 

  67. Chen G, Cao P, Goeddel DV (2002) TNF-induced recruitment and activation of the IKK complex require Cdc37 and Hsp90. Mol Cell 9:401–410

    PubMed  CAS  Google Scholar 

  68. Multhoff G et al (1995) CD3- large granular lymphocytes recognize a heat-inducible immunogenic determinant associated with the 72-kD heat shock protein on human sarcoma cells. Blood 86:1374–1382

    PubMed  CAS  Google Scholar 

  69. Pearl LH, Prodromou C, Workman P (2008) The Hsp90 molecular chaperone: an open and shut case for treatment. Biochem J 410:439–453

    PubMed  CAS  Google Scholar 

  70. Workman P et al (2007) Drugging the cancer chaperone HSP90: combinatorial therapeutic exploitation of oncogene addiction and tumor stress. Ann N Y Acad Sci 1113:202–216

    PubMed  CAS  ADS  Google Scholar 

  71. Stebbins CE et al (1997) Crystal structure of an Hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell 89:239–250

    PubMed  CAS  Google Scholar 

  72. Calderwood SK et al (2006) Heat shock proteins in cancer: chaperones of tumorigenesis. Trends Biochem Sci 31:164–172

    PubMed  CAS  Google Scholar 

  73. Tasneem S, Islam N, Ali R (2001) Crossreactivity of SLE autoantibodies with 70 kDa heat shock proteins of Mycobacterium tuberculosis. Microbiol Immunol 45:841–846

    PubMed  CAS  Google Scholar 

  74. Panchapakesan J, Daglis M, Gatenby P (1992) Antibodies to 65 kDa and 70 kDa heat shock proteins in rheumatoid arthritis and systemic lupus erythematosus. Immunol Cell Biol 70:295–300

    PubMed  CAS  Google Scholar 

  75. Stevens TR et al (1992) Circulating antibodies to heat-shock protein 60 in Crohn’s disease and ulcerative colitis. Clin Exp Immunol 90:271–274

    PubMed  CAS  Google Scholar 

  76. De Smet MD, Ramadan A (2001) Circulating antibodies to inducible heat shock protein 70 in patients with uveitis. Ocul Immunol Inflamm 9:85–92

    PubMed  Google Scholar 

  77. van Eden W, van der Zee R, Prakken B (2005) Heat-shock proteins induce T-cell regulation of chronic inflammation. Nat Rev Immunol 4:318–330

    PubMed  Google Scholar 

  78. Tanaka S et al (1999) Activation of T cells recognizing an epitope of heat-shock protein 70 can protect against rat adjuvant arthritis. J Immunol 163:5560–5565

    PubMed  CAS  Google Scholar 

  79. de Kleer IM et al (2003) The spontaneous remission of juvenile idiopathic arthritis is characterized by CD30+ T cells directed to human heat-shock protein 60 capable of producing the regulatory cytokine interleukin-10. Arthritis Rheum 48:2001–2010

    PubMed  Google Scholar 

  80. Johnson BJ et al (2005) Heat shock protein 10 inhibits lipopolysaccharide-induced inflammatory mediator production. J Biol Chem 280:4037–4047

    PubMed  CAS  Google Scholar 

  81. Cohen-Sfady M et al (2005) Heat shock protein 60 activates B cells via the TLR4-MyD88 pathway. J Immunol 175:3594–3602

    PubMed  CAS  Google Scholar 

  82. Chandawarkar RY, Wagh MS, Srivastava PK (1999) The dual nature of specific immunological activity of tumor-derived gp96 preparations. J Exp Med 189:1437–1442

    PubMed  CAS  Google Scholar 

  83. Kovalchin JT et al (2006) In vivo treatment of mice with heat shock protein, gp96, improves survival of skin grafts with minor and major antigenic disparity. Transplant Immunol 15:179–185

    CAS  Google Scholar 

  84. Slack LK et al (2007) Administration of the stress protein gp96 prolongs rat cardiac allograft survival, modifies rejection-associated inflammatory events and induces a state of peripheral T cell hyporesponsiveness. Cell Stress Chaperones 12:71–82

    PubMed  CAS  Google Scholar 

  85. Chandawarkar RY et al (2004) Immune modulation with high-dose heat-shock protein gp96: therapy of murine autoimmune diabetes and encephalomyelitis. Int Immunol 16:615–624

    PubMed  CAS  Google Scholar 

  86. Jenne DE, Tschopp J (1992) Clusterin: the intriguing guises of a widely expressed glycoprotein. Trends Biochem Sci 17:154–159

    PubMed  CAS  Google Scholar 

  87. Murphy BF et al (1988) SP-40, 40, a newly identified normal human serum protein found in the SC5b–9 complex of complement and in the immune deposits in glomerulonephritis. J Clin Invest 81:1858–1864

    PubMed  CAS  Google Scholar 

  88. Choi NH et al (1990) Sandwich ELISA for quantitative measurement of SP-40, 40 in seminal plasma and serum. J Immunol Methods 131:159–163

    PubMed  CAS  Google Scholar 

  89. de Silva HV et al (1990) Apolipoprotein J: structure and tissue distribution. Biochemistry 29:5380–5389

    PubMed  Google Scholar 

  90. Hermo L, Barin K, Oko R (1994) Developmental expression of sulfated glycoprotein-2 in the epididymis of the rat. Anat Rec 240:327–344

    PubMed  CAS  Google Scholar 

  91. Jordan-Starck TC et al (1992) Apolipoprotein J: a membrane policeman? Curr Opin Lipidol 3:75–85

    CAS  Google Scholar 

  92. Buttyan R et al (1989) Induction of the Trpm-2 gene in cells undergoing programmed death. Mol Cell Biol 9:3473–3481

    PubMed  CAS  Google Scholar 

  93. Kapron JT et al (1997) Identification and characterization of glycosylation sites in human serum clusterin. Protein Sci 6:2120–2123

    PubMed  CAS  Google Scholar 

  94. Lupas A (1991) Predicting coiled-coils from protein sequences. Science 252:1162–1164

    CAS  ADS  Google Scholar 

  95. Bailey RW et al (2001) Clusterin, a binding protein with a molten globule-like region. Biochemistry 40:11828–11840

    PubMed  CAS  Google Scholar 

  96. Yang CR et al (2000) Nuclear clusterin/XIP8, an X-ray induced Ku70-binding protein that signals cell death. Proc Natl Acad Sci U S A 97:5907–5912

    PubMed  CAS  ADS  Google Scholar 

  97. Santilli G, Aronow BJ, Sala A (2003) Essential requirement of apolipoprotein J (clusterin) signalling for Ikappa B expression and regulation of NF-kappaB activity. J Biol Chem 278:38214–38219

    PubMed  CAS  Google Scholar 

  98. Kang SW et al (2005) Clusterin interacts with SCLIP (SCG10-like protein) and promotes neurite outgrowth of PC12. Exp Cell Res 309:305–315

    PubMed  CAS  Google Scholar 

  99. Debure L et al (2003) Intracellular clusterin causes juxtanuclear aggregate formation and mitochondrial alteration. J Cell Sci 116:3109–3121

    PubMed  CAS  Google Scholar 

  100. Zhang HL et al (2005) Clusterin inhibits apoptosis by interacting with activated Bax. Nat Cell Biol 7:909–915

    PubMed  CAS  Google Scholar 

  101. Nizard P et al (2007) Stress-induced retrotranslocation of clusterin/ApoJ into the cytosol. Traffic 8:554–565

    PubMed  CAS  Google Scholar 

  102. Reddy KB et al (1996) Transforming growthfactor β (TGFβ)-induced nuclear localization of apolipoprotein J/clusterin in epithelial cells. Biochemistry 35:6157–6163

    PubMed  CAS  Google Scholar 

  103. Leskov KS et al (2003) Synthesis and functional analyses of nuclear clusterin, a cell death protein. J Biol Chem 278:11590–11600

    PubMed  CAS  Google Scholar 

  104. Carver JA et al (2003) Small heat-shock proteins and clusterin: intra- and extracellular molecular chaperones with a common mechanism of action and function. IUBMB Life 55:661–668

    PubMed  CAS  Google Scholar 

  105. Poon S et al (2000) Clusterin is an ATP-independent chaperone with a very broad substrate specificity that stabilizes stressed proteins in a folding-competent state. Biochemistry 39:15953–15960

    PubMed  CAS  Google Scholar 

  106. Poon S et al (2002) Mildly acidic pH activates the extracellular molecular chaperone clusterin. J Biol Chem 277:39532–39540

    PubMed  CAS  Google Scholar 

  107. Poon S et al (2002) Clusterin is an extracellular chaperone that specifically interacts with slowly aggregating proteins on their off-folding pathway. FEBS Lett 513:259–266

    PubMed  CAS  Google Scholar 

  108. Kumita JR et al (2007) The extracellular chaperone clusterin potentially inhibits amyloid formation by interacting with prefibrillar species. J Mol Biol 369:157–167

    PubMed  CAS  Google Scholar 

  109. Wyatt AR, Yerbury JJ, Wilson MR (2009) Structural characterization of clusterin-client protein complexes. J Biol Chem 284:21920–21927

    PubMed  CAS  Google Scholar 

  110. Wyatt AR, Wilson MR (2010) Identification of human plasma proteins as major clients for the extracellular chaperone clusterin. J Biol Chem 285:3532–3539

    PubMed  CAS  Google Scholar 

  111. Matsubara E, Frangione B, Ghiso J (1995) Characterization of apolipoprotein J-Alzheimer’s a-beta interaction. J Biol Chem 270:7563–7567

    PubMed  CAS  Google Scholar 

  112. Oda T et al (1995) Clusterin (apoJ) alters the aggregation of amyloid beta peptide 1-42 and forms slowly sedimenting A-beta complexes that cause oxidative stress. Exp Neurol 136:22–31

    PubMed  CAS  Google Scholar 

  113. McHattie S, Edington N (1999) Clusterin prevents aggregation of neuropeptide 106-126 in vitro. Biochem Biophys Res Commun 259:336–340

    PubMed  CAS  Google Scholar 

  114. Hatters DM et al (2002) Suppression of apolipoprotein C-II amyloid formation by the extracellular chaperone, clusterin. Eur J Biochem 269:2789–2794

    PubMed  CAS  Google Scholar 

  115. Yerbury JJ et al (2007) The extracellular chaperone clusterin influences amyloid formation and toxicity by interacting with pre-fibrillar structures. FASEB J 21:2312–2322

    PubMed  CAS  Google Scholar 

  116. Bucciantini M et al (2004) Pre-fibrillar amyloid protein aggregates share common features of cytotoxicity. J Biol Chem 279:31374–31382

    PubMed  CAS  Google Scholar 

  117. Kounnas MZ et al (1995) Identification of Glycoprotein 330 as an endocytic receptor for appolipoprotein J/Clusterin. Biochemistry 270:13070–13075

    CAS  Google Scholar 

  118. Zlokovic BV et al (1996) Glycoprotein 330 megalin: probable role in receptor-mediated transport of apolipoprotein J alone and in a complex with Alzheimer disease amyloid b at the blood–brain and blood–cerebrospinal fluid barriers. Proc Natl Acad Sci USA 93:4229–4234

    PubMed  CAS  ADS  Google Scholar 

  119. Hammad SM et al (1997) Interaction of apolipoprotein J-amyloid B-peptide complex with low density lipoprotein receptor-related protein-2/megalin. J Biol Chem 272:18644–18649

    PubMed  CAS  Google Scholar 

  120. Calero M et al (1999) Functional and structural properties of lipid-associated apolipoprotein J (clusterin). Biochem J 344:375–383

    PubMed  CAS  Google Scholar 

  121. Mahon MG et al (1999) Multiple involvement of clusterin in chicken ovarian follicle development. J Biol Chem 274:4036–4044

    PubMed  CAS  Google Scholar 

  122. Bartl MM et al (2001) Multiple receptors mediate apoJ-dependent clearance of cellular debrisinto nonprofessional phagocytes. Exp Cell Res 271:130–141

    PubMed  CAS  Google Scholar 

  123. Lakins JN et al (2002) Evidence that clusterin has discrete chaperone and ligand binding sites. Biochemistry 41:282–291

    PubMed  CAS  Google Scholar 

  124. Bajari TM et al (2003) A model for modulation of leptin activity by association with clusterin. FASEB J 17:1505–1507

    PubMed  CAS  Google Scholar 

  125. Crabb JW et al (2002) Drusen proteome analysis: an approach to the etiology of age-related macular degeneration. Proc Natl Acad Sci USA 99:14682–14687

    PubMed  CAS  ADS  Google Scholar 

  126. French LE, Tschopp J, Schifferli JA (1992) Clusterin in renal tissue: preferential localization with the terminal complement complex and immunoglobulin deposits in glomeruli. Clin Exp Immunol 88:389–393

    PubMed  CAS  Google Scholar 

  127. Sasaki K et al (2002) Clusterin/apolipoprotein J is associated with cortical Lewy bodies: immunohistochemical study in cases with alpha-synucleinopathies. Acta Neuropathol 104:225–230

    PubMed  CAS  Google Scholar 

  128. Freixes M et al (2004) Clusterin solubility and aggregation in Creutzfeldt-Jakob disease. Acta Neuropathol 108:295–301

    PubMed  CAS  Google Scholar 

  129. Zenkel M et al (2006) Clusterin deficiency in eyes with pseudoexfoliation syndrome may be implicated in the aggregation and deposition of pseudoexfoliative material. Invest Opthalmol Vis Sci 47:1982–1990

    Google Scholar 

  130. Mackness B et al (1997) Increased immunolocalization of paraoxonase, clusterin and apolipoprotein A-I in the human artery wall with the progression of atherosclerosis. Arterioscler Thromb Vasc Biol 17:1233–1238

    PubMed  CAS  Google Scholar 

  131. Witte DP et al (1993) Platelet activation releases megakaryocyte-synthesized apolipoprotein J, a highly abundant protein in a atheromatous lesions. Am J Pathol 143:763–773

    PubMed  CAS  Google Scholar 

  132. Ghiso J et al (1993) The cerebrospinal-fluid soluble form of Alzheimer’s amyloid beta is complexed to SP-40, 40 (apolipoprotein J), an inhibitor of the complement membrane-attack complex. Biochem J 293:27–30

    PubMed  CAS  Google Scholar 

  133. Calero M et al (2000) Apolipoprotein J (clusterin) and Alzheimer’s disease. Microsc Res Tech 50:305–315

    PubMed  CAS  Google Scholar 

  134. Rosenberg ME, Silkensen J (1995) Clusterin: physiologic and pathophysiologic considerations. Int J Biochem Cell Biol 27:633–645

    PubMed  CAS  Google Scholar 

  135. Strocchi P et al (2006) Clusterin up-regulation following sub-lethal oxidative stress and lipid peroxidation in human neuroblastoma cells. Neurobiol Aging 27:1588–1594

    PubMed  CAS  Google Scholar 

  136. Ubrich C et al (2000) Laminar shear stress upregulates the complement-inhibitory protein clusterin. Circulation 101:352–355

    Google Scholar 

  137. Loison F et al (2006) Up-regulation of the clusterin gene after proteotoxic stress: implications of HSF1-HSF2 heterocomplexes. Biochem J 395:223–231

    PubMed  CAS  Google Scholar 

  138. Michel D et al (1997) Stress-induced transcription of the clusterin/apoJ gene. Biochem J 328:45–50

    PubMed  CAS  Google Scholar 

  139. Criswell T et al (2005) Delayed activation of insulin-like growth factor-1 receptor/Src/MAPK/Egr-1 signaling regulates clusterin expression, a pro-survival factor. J Biol Chem 280:14212–14221

    PubMed  CAS  Google Scholar 

  140. Trougakos IP et al (2006) Clusterin/apolipoprotein J up-regulation after zinc exposure, replicative senescence or differentiation of human haematopoietic cells. Biogerontology 7:375–382

    PubMed  CAS  Google Scholar 

  141. Bailey RW et al (2002) Heat shock-initiated apoptosis is accelerated and removal of damaged cells is delayed in the testis of clusterin/apoJ knock-out mice. Biol Reprod 66:1042

    PubMed  CAS  Google Scholar 

  142. McLaughlin L et al (2000) Apolipoprotein J/clusterin limits the severity of murine autoimmune myocarditis. J Clin Invest 106:1105–1113

    PubMed  CAS  Google Scholar 

  143. Wehrli P et al (2001) Inhibition of post-ischemic brain injury by clusterin overexpression. Nat Med 7:977–978

    PubMed  CAS  Google Scholar 

  144. Harold D et al (2009) Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease. Nature Genetics 41:1088–1093

    Google Scholar 

  145. Lambert JC et al (2009) Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease. Nature Genetics 41:1094–1099

    Google Scholar 

  146. DeMattos RB et al (2004) ApoE and clusterin cooperatively suppress Abeta levels and deposition: evidence that ApoE regulates extracellular Abeta metabolism in vivo. Neuron 41:193–202

    PubMed  CAS  Google Scholar 

  147. Jensen PE, Sottrup-Jensen L (1986) Primary structure of human alpha-2-macroglobulin. Complete disulfide bridge assignment and localization of two interchain bridges in the dimeric and proteinase binding unit. J Biol Chem 261:15863–15869

    PubMed  CAS  Google Scholar 

  148. Sottrup-Jensen L (1989) Alpha-macroglobulins: structure shape and mechanism of proteinase complex formation. J Biol Chem 264:11539–11542

    PubMed  CAS  Google Scholar 

  149. Biringer RG et al (2006) Enhanced sequence coverage of proteins in human cerebrospinal fluid using multiple enzymatic digestion and linear ion trap LC-MS/MS. Brief Funct Genomic Proteomic 5:144–153

    PubMed  CAS  Google Scholar 

  150. Imber MJ, Pizzo SV (1981) Clearance and binding of two electrophoretic “fast” forms of human alpha 2-macroglobulin. J Biol Chem 256:8134–8139

    PubMed  CAS  Google Scholar 

  151. LaMarre J et al (1991) Cytokine binding and clearance properties of proteinase-activated alpha 2-macroglobulins. Lab Invest 65:3–14

    PubMed  CAS  Google Scholar 

  152. Feige JJ et al (1996) Alpha-2-macroglobulin: a binding protein for transforming growth factor-beta and various cytokines. Horm Res 45:227–232

    PubMed  CAS  Google Scholar 

  153. Crookston KP et al (1994) Classification of alpha-2-macroglobulin-cytokine interactions based on affinity of noncovalent association in solution under apparent equilibrium conditions. J Biol Chem 269:1533–1540

    PubMed  CAS  Google Scholar 

  154. Araujo-Jorge TC, de Meirelles MN, Isaac L (1990) Trypanosoma cruzi: killing and enhanced uptake by resident peritoneal macrophages treated with alpha-2-macroglobulin. Parasitol Res 76:545–552

    PubMed  CAS  Google Scholar 

  155. Narita M et al (1997) Alpha-2-macroglobulin complexes with and mediates the endocytosis of beta-amyloid peptide via cell surface low-density lipoprotein receptor-related protein. J Neurochem 69:1904–1911

    PubMed  CAS  Google Scholar 

  156. Mettenburg JM, Webb DJ, Gonias SL (2002) Distinct binding sites in the structure of alpha-2-macroglobulin mediate the interaction with beta-amyloid peptide and growth factors. J Biol Chem 277:13338–13345

    PubMed  CAS  Google Scholar 

  157. Motomiya Y et al (2003) Circulating levels of alpha-2-macroglobulin-beta-2-microglobulin complex in hemodialysis patients. Kidney Int 64:2244–2252

    PubMed  CAS  Google Scholar 

  158. Adler V, Kryukov V (2007) Serum macroglobulin induces prion protein transition. Neurochem J 1:43–52

    Google Scholar 

  159. French K, Yerbury JJ, Wilson MR (2008) Protease activation of alpha-2-macroglobulin modulates a chaperone-like action with broad specificity. Biochemistry 47:1176–1185

    PubMed  CAS  Google Scholar 

  160. van Dijk MC et al (1992) Role of the scavenger receptor in the uptake of methylamine-activated alpha-2-macroglobulin by rat liver. Biochem J 287(Pt 2):447–455

    PubMed  Google Scholar 

  161. Hughes SR et al (1998) Alpha-2-macroglobulin associates with beta-amyloid and prevents fibril formation. Proc Natl Acad Sci USA 95:3275–3280

    PubMed  CAS  ADS  Google Scholar 

  162. Yerbury JJ et al (2009) Alpha-2-macroglobulin and haptoglobin supress amyloid formation by interacting with prefibrillar protien species. J Biol Chem 284:4246–4254

    PubMed  CAS  Google Scholar 

  163. Fabrizi C et al (2001) Role of alpha-2-macroglobulin in regulating amyloid–protein neurotoxicity: protective or detrimental factor? J Neurochem 78:406–412

    PubMed  CAS  Google Scholar 

  164. Du Y et al (1997) Alpha-2-macroglobulin as a beta-amyloid peptide-binding plasma protein. J Neurochem 69:299–305

    PubMed  CAS  Google Scholar 

  165. Adler V et al (2007) Alpha-2-macroglobulin is a potential facilitator of prion protein transformation. Amyloid 14:1–10

    PubMed  CAS  Google Scholar 

  166. Shibata M et al (2000) Clearance of Alzheimer’s amyloid-β(1-40) peptide from brain by LDL receptor–related protein-1 at the blood-brain barrier. J Clin Invest 106:1489–1499

    PubMed  CAS  Google Scholar 

  167. Binder RJ (2004) Purification of alpha-2-macroglobulin and the construction of immunogenic alpha-2-macroglobulin-peptide complexes for use as cancer vaccines. Methods 32:29–31

    PubMed  CAS  Google Scholar 

  168. Binder RJ, Kumar SK, Srivastava PK (2002) Naturally formed or artificially reconstituted non-covalent alpha2-macroglobulin-peptide complexes elicit CD91-dependent cellular immunity. Cancer Immun 2:16

    PubMed  Google Scholar 

  169. Bowman BH, Kurosky A (1982) Haptoglobin: the evolutionary product of duplication, unequal crossing over, and point mutation. Adv Hum Genet 12:189–261

    PubMed  CAS  Google Scholar 

  170. Dobryszycka W (1997) Biological functions of haptoglobin – new pieces to an old puzzle. Eur J Clin Chem Clin Biochem 35:647–654

    PubMed  CAS  Google Scholar 

  171. Giblett ER (1968) The haptoglobin system. Ser Haematol 1:3–20

    CAS  Google Scholar 

  172. Gutteridge JM (1987) The antioxidant activity of haptoglobin towards haemoglobin-stimulated lipid peroxidation. Biochim Biophys Acta 917:219–223

    PubMed  CAS  Google Scholar 

  173. Edwards DH et al (1986) Haptoglobin-haemoglobin complex in human plasma inhibits endothelium dependent realxation: evidence that endothelium derived relaxing factor acts as a local autocoid. Cardiovasc Res 20:549–556

    PubMed  CAS  Google Scholar 

  174. Lange V (1992) Haptoglobin polymorphisms – not only a genetic marker. Anthropol Anz 50:281–302

    PubMed  CAS  Google Scholar 

  175. Barclay R (1985) The role of iron in infection. Med Lab Sci 42:166–177

    PubMed  CAS  Google Scholar 

  176. Cid MC et al (1993) Identification of haptoglobin as an angiogenic factor in sera from patients with systemic vascularitis. J Clin Invest 91:977–985

    PubMed  CAS  Google Scholar 

  177. Baskies AM et al (1980) Serum glycoproteins in cancer patients: first reports of correlations with in vitro and in vivo parameters of cellular immunity. Cancer 45:3050–3060

    PubMed  CAS  Google Scholar 

  178. Sobek O, Adam P, Seyfert OS, Kunzmann V, Schwetfeger N, Koch HC, Faulstich A (2003) Determinants of lumbar CSF protein concentration. J Neurol 250:371–372

    PubMed  CAS  Google Scholar 

  179. Kurosky A et al (1980) Covalent structure of human haptoglobin: a serine protease homolog. Proc Natl Acad Sci U S A 77:3388–3392

    PubMed  CAS  ADS  Google Scholar 

  180. Pavlicek Z, Ettrich R (1999) Chaperone-like activity of human haptoglobin: similarity with α-crystallin. Collect Czech Chem Commun 64:717–725

    CAS  Google Scholar 

  181. Yerbury JJ et al (2005) The acute phase protein haptoglobin is a mammalian extracellular chaperone with an action similar to clusterin. Biochemistry 44:10914–10925

    PubMed  CAS  Google Scholar 

  182. El Ghmati SM et al (1996) Identification of haptoglobin as an alternative ligand for CD11b/CD18. J Immunol 156:2542–2552

    PubMed  CAS  Google Scholar 

  183. Wagner L et al (1996) Haptoglobin phenotyping by newly developed monoclonal antibodies: demonstration of haptoglobin uptake into peripheral blood neutrophils and monocytes. J Immunol 156:1989–1996

    PubMed  CAS  Google Scholar 

  184. Kristiansen M et al (2001) Identification of the haemoglobin scavenger receptor. Nature 409:198–201

    PubMed  CAS  ADS  Google Scholar 

  185. Langlois MR, Delanghe JR (1996) Biological and clinical significance of haptoglobin polymorphisms in humans. Clin Chem 42:1589–1600

    PubMed  CAS  Google Scholar 

  186. Powers JM et al (1981) An immunoperoxidase study of senile cerebral amyloidosis with pathogenetic considerations. J Neuropathol Exp Neurol 40:592–612

    PubMed  CAS  Google Scholar 

  187. Kliffen M, de Jong PT, Luider TM (1995) Protein analysis of human maculae in relation to age-related maculopathy. Lab Invest 72:267–272

    Google Scholar 

  188. Tomino Y et al (1981) Immunofluorescent studies on acute phase reactants in patients with various types of chronic glomerulonephritis. Tokai J Exp Clin Med 6:435–441

    PubMed  CAS  Google Scholar 

  189. Cedazo-Minguez A, Cowburn RF (2001) Apolipoprotein E: a major piece in the Alzheimer’s disease puzzle. J Cell Mol Med 5:254–266

    PubMed  CAS  Google Scholar 

  190. Zannis VI, Kardassis D, Zanni EE (1993) Genetic mutations affecting human lipoproteins, their receptors, and their enzymes. Adv Hum Genet 21:145–319

    PubMed  CAS  Google Scholar 

  191. Li WH et al (1988) The apolipoprotein multigene family: biosynthesis, structure, structure-function relationships, and evolution. J Lipid Res 29:245–271

    PubMed  CAS  Google Scholar 

  192. Strittmatter WJ et al (1993) Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci USA 90:1977–1981

    PubMed  CAS  ADS  Google Scholar 

  193. Strittmatter WJ et al (1994) Isoform-specific interactions of apolipoprotein E with microtubule-associated tau: implications for Alzheimer disease. Proc Natl Acad Sci USA 91:11183–11186

    PubMed  CAS  ADS  Google Scholar 

  194. Strittmatter WJ et al (1993) Binding of human apolipoprotein E to synthetic amyloid β peptide: isoform specific-effects and implications for late-onset Alzheimer disease. Proc Natl Acad Sci USA 90:8098–8102

    PubMed  CAS  ADS  Google Scholar 

  195. LaDu MJ et al (1994) Isoform-specific binding of apolipoprotein E to beta-amyloid. J Biol Chem 269:23403–23406

    PubMed  CAS  Google Scholar 

  196. Pillot T et al (1997) Specific modulation of the fusogenic properties of the Alzheimer beta-amyloid peptide by apolipoprotein E isoforms. Eur J Biochem 243:650–659

    PubMed  CAS  Google Scholar 

  197. Wood SJ, Chan W, Wetzel R (1996) An ApoE-Abeta inhibition complex in Abeta fibril extension. Chem Biol 3:949–956

    PubMed  CAS  Google Scholar 

  198. Evans KC et al (1995) Apolipoprotein E is a kinetic but not a thermodynamic inhibitor of amyloid formation: implications for the pathogenesis and treatment of Alzheimer disease. Proc Natl Acad Sci USA 92:763–767

    PubMed  CAS  ADS  Google Scholar 

  199. Castano EM et al (1995) Fibrillogenesis in Alzheimer’s disease of amyloid beta peptides and apolipoprotein E. Biochem J 306(Pt 2):599–604

    PubMed  CAS  Google Scholar 

  200. Ma J et al (1994) Amyloid-associated proteins alpha 1-antichymotrypsin and apolipoprotein E promote assembly of Alzheimer beta-protein into filaments. Nature 372:92–94

    PubMed  CAS  ADS  Google Scholar 

  201. Corder EH et al (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261:921–923

    PubMed  CAS  ADS  Google Scholar 

  202. Namba Y et al (1991) Apolipoprotein E immunoreactivity in cerebral amyloid deposits and neurofibrillary tangles in Alzheimer’s disease and kuru plaque amyloid in Creutzfeldt-Jakob disease. Brain Res 541:163–166

    PubMed  CAS  Google Scholar 

  203. Bales KR et al (1997) Lack of apolipoprotein E dramatically reduces amyloid beta-peptide deposition. Nat Genet 17:263–264

    PubMed  CAS  Google Scholar 

  204. Bales KR et al (1999) Apolipoprotein E is essential for amyloid deposition in the APP(V717F) transgenic mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 96:15233–15238

    PubMed  CAS  ADS  Google Scholar 

  205. Holtzman DM et al (1999) Expression of human apolipoprotein E reduces amyloid-beta deposition in a mouse model of Alzheimer’s disease. J Clin Invest 103:R15–R21

    PubMed  CAS  Google Scholar 

  206. Mackic JB et al (1998) Human blood–brain barrier receptors for Alzheimer’s amyloid-beta 1-40. Asymmetrical binding, endocytosis, and transcytosis at the apical side of brain microvascular endothelial cell monolayer. J Clin Invest 102:734–743

    PubMed  CAS  Google Scholar 

  207. Koistinaho M et al (2004) Apolipoprotein E promotes astrocyte colocalization and degradation of deposited amyloid-beta peptides. Nat Med 10:719–726

    PubMed  CAS  Google Scholar 

  208. Hu J, LaDu MJ, Van Eldik LJ (1998) Apolipoprotein E attenuates beta-amyloid-induced astrocyte activation. J Neurochem 71:1626–1634

    PubMed  CAS  Google Scholar 

  209. Lim SK et al (1998) Increased susceptibility in Hp knockout mice during acute hemolysis. Blood 92:1870–1877

    PubMed  CAS  Google Scholar 

  210. Emsley J et al (1994) Structure of pentameric human serum amyloid-P component. Nature 367:338–345

    PubMed  CAS  ADS  Google Scholar 

  211. Pepys MB et al (1994) Human serum amyloid P component is an invariant constituent of amyloid deposits and has a uniquely homogeneous structure. Proc Natl Acad Sci USA 91:5602–5606

    PubMed  CAS  ADS  Google Scholar 

  212. Wood SP et al (1988) A pentameric form of human serum amyloid P component. Crystallization, X-ray diffraction and neutron scattering studies. J Mol Biol 202:169–173

    PubMed  CAS  Google Scholar 

  213. Sorensen IJ et al (1995) Native human serum amyloid P component is a single pentamer. Scand J Immunol 41:263–267

    PubMed  CAS  Google Scholar 

  214. Aquilina JA, Robinson CV (2003) Investigating interactions of the pentraxins serum amyloid P component and C-reactive protein by mass spectrometry. Biochem J 375:323–328

    PubMed  CAS  Google Scholar 

  215. Pepys MB et al (1978) Comparative clinical study of protein SAP (amyloid P component) and C-reactive protein in serum. Clin Exp Immunol 32:119–124

    PubMed  CAS  Google Scholar 

  216. Hutchinson WL et al (1994) The pentraxins, C-reactive protein and serum amyloid P component, are cleared and catabolized by hepatocytes in vivo. J Clin Invest 94:1390–1396

    PubMed  CAS  Google Scholar 

  217. Hawkins PN et al (1994) Concentration of serum amyloid P component in the CSF as a possible marker of cerebral amyloid deposits in Alzheimer’s disease. Biochem Biophys Res Commun 201:722–726

    PubMed  CAS  Google Scholar 

  218. Bickerstaff MCM et al (1999) Serum amyloid P component controls chromatin degradation and prevents antinuclear autoimmunity. Nat Med 5:694–697

    PubMed  CAS  Google Scholar 

  219. Breathnach SM et al (1989) Serum amyloid P component binds to cell nuclei in vitro and to in vivo deposits of extracellular chromatin in systemic lupus erythematosus. J Exp Med 170:1433–1438

    PubMed  CAS  Google Scholar 

  220. Sorensen IJ et al (2000) Complexes of serum amyloid P component and DNA in serum from healthy individuals and systemic lupus erythematosus patients. J Clin Immunol 20:408–415

    PubMed  CAS  Google Scholar 

  221. de Haas CJC (1999) New insights into the role of serum amyloid P component, a novel lipopolysaccharide-binding protein. FEMS Immunol Med Microbiol 26:197–202

    PubMed  Google Scholar 

  222. Sorensen IJ et al (1996) Binding of complement proteins C1q and C4bp to serum amyloid P component (SAP) in solid contra liquid phase. Scand J Immunol 44:401–407

    PubMed  CAS  Google Scholar 

  223. Barbashov SF, Wang C, Nicholson-Weller A (1997) Serum amyloid P component forms a stable complex with human C5b6. J Immunol 158:3830–3858

    PubMed  CAS  Google Scholar 

  224. de Beer FC et al (1981) Fibronectin and C4-binding protein are selectively bound by aggregated amyloid P component. J Exp Med 154:1134–1139

    PubMed  Google Scholar 

  225. Swanson SJ, Christner RB, Mortensen RF (1992) Human serum amyloid P-component (SAP) selectively binds to immobilized or bound forms of C-reactive protein (CRP). Biochim Biophys Acta 1160:309–316

    PubMed  CAS  Google Scholar 

  226. Brown MR, Anderson BE (1993) Receptor-ligand interactions between serum amyloid P component and model soluble immune complexes. J Immunol 151:2087–2095

    PubMed  CAS  Google Scholar 

  227. de Haas CJC et al (1998) A synthetic lipopolysaccharide (LPS)-binding peptide based on amino acids 27–39 of serum amyloid P component inhibits LPS-induced responses in human blood. J Immunol 161:3607–3615

    PubMed  Google Scholar 

  228. Botto M et al (1997) Amyloid deposition is delayed in mice with targeted deletion of the serum amyloid P component gene. Nat Med 3:885–889

    Google Scholar 

  229. Coria F et al (1988) Isolation and characterization of amyloid P component from Alzheimer’s disease and other types of cerebral amyloidosis. Lab Invest 58:454–458

    PubMed  CAS  Google Scholar 

  230. Breathnach SM et al (1981) Amyloid P component is located on elastic fibre microfibrils in normal human tissue. Nature 293:652–654

    PubMed  CAS  ADS  Google Scholar 

  231. Kalaria RN et al (1991) Serum amyloid P in Alzheimer’s disease. Implications for dysfunction of the blood-brain barrier. Ann NY Acad Sci 640:145–148

    PubMed  CAS  Google Scholar 

  232. Yang GC et al (1992) Ultrastructural immunohistochemical localization of polyclonal IgG, C3, and amyloid P component on the congo red-negative amyloid-like fibrils of fibrillary glomerulopathy. Am J Pathol 141:409–410

    PubMed  CAS  Google Scholar 

  233. Coker AR et al (2000) Molecular chaperone properties of serum amyloid P component. FEBS Lett 473:199–202

    PubMed  CAS  Google Scholar 

  234. Hamazaki H (1995) Ca(2+)-dependent binding of human serum amyloid P component to Alzheimer’s beta-amyloid peptide. J Biol Chem 270:10392–10394

    PubMed  CAS  Google Scholar 

  235. Pepys MB et al (1979) Binding of serum amyloid P component (SAP) by amyloid fibrils. Clin Exp Immunol 38:284–293

    PubMed  CAS  Google Scholar 

  236. Tennent GA, Lovat LB, Pepys MB (1995) Serum amyloid P component prevents proteolysis of the amyloid fibrils of Alzheimer’s disease and systemic amyloidosis. Proc Natl Acad Sci USA 92:4299–4303

    PubMed  CAS  ADS  Google Scholar 

  237. Swaisgood HE (2003) Chemistry of the caseins. In: Fox PF, McSweeney PLH (eds) Advanced dairy chemistry. Kluwer Academic/Plenum, New York

    Google Scholar 

  238. Uversky VN (2002) What does it mean to be natively unfolded? Eur J Biochem 269:2–12

    PubMed  CAS  Google Scholar 

  239. Farrell HM Jr et al (2002) Molten globule structures in milk proteins: implications for potential new structure-function relationships. J Dairy Sci 85:459–471

    PubMed  CAS  Google Scholar 

  240. Kumosinski TF, Brown EM, Farrell HM Jr (1993) Three-dimensional molecular modeling of bovine caseins: a refined, energy-minimized kappa-casein structure. J Dairy Sci 76:2507–2520

    PubMed  CAS  Google Scholar 

  241. Farrell HM Jr et al (2009) Review of the chemistry of alphaS2-casein and the generation of a homologous molecular model to explain its properties. J Dairy Sci 92:1338–1353

    PubMed  CAS  Google Scholar 

  242. Thorn DC, Ecroyd H, Carver JA (2009) The two-faced nature of milk casein proteins: amyloid fibril formation and chaperone-like activity. Aust J Dairy Technol 64:36–40

    Google Scholar 

  243. Bhattacharyya J, Das KP (1999) Molecular chaperone-like properties of an unfolded protein, alpha(s)-casein. J Biol Chem 274:15505–15509

    PubMed  CAS  Google Scholar 

  244. Matsudomi N et al (2004) Ability of alpha(s)-casein to suppress the heat aggregation of ovotransferrin. J Agric Food Chem 52:4882–4886

    PubMed  CAS  Google Scholar 

  245. Morgan PE et al (2005) Casein proteins as molecular chaperones. J Agric Food Chem 53:2670–2683

    PubMed  CAS  ADS  Google Scholar 

  246. Zhang X et al (2005) Chaperone-like activity of beta-casein. Int J Biochem Cell Biol 37:1232–1240

    PubMed  CAS  Google Scholar 

  247. Hassanisadi M et al (2008) Chemometric study of the aggregation of alcohol dehydrogenase and its suppression by beta-caseins: a mechanistic perspective. Anal Chim Acta 613:40–47

    PubMed  CAS  Google Scholar 

  248. Koudelka T, Hoffmann P, Carver JA (2009) Dephosphorylation of alpha(s)- and beta-caseins and its effect on chaperone activity: a structural and functional investigation. J Agric Food Chem 57:5956–5964

    PubMed  CAS  Google Scholar 

  249. Khodarahmi R, Beyrami M, Soori H (2008) Appraisal of casein’s inhibitory effects on aggregation accompanying carbonic anhydrase refolding and heat-induced ovalbumin fibrillogenesis. Arch Biochem Biophys 477:67–76

    PubMed  CAS  Google Scholar 

  250. Thorn DC et al (2005) Amyloid fibril formation by bovine milk kappa-casein and its inhibition by the molecular chaperones alpha(s)- and beta-casein. Biochemistry 44:17027–17036

    PubMed  CAS  Google Scholar 

  251. Thorn DC et al (2008) Amyloid fibril formation by bovine milk alpha s2-casein occurs under physiological conditions yet is prevented by its natural counterpart, alpha s1-casein. Biochemistry 47:3926–3936

    PubMed  CAS  Google Scholar 

  252. Farrell HM Jr et al (2006) Casein micelle structure: what can be learned from milk synthesis and structural biology. Curr Opin Colloid Interf Sci 11:135–147

    CAS  Google Scholar 

  253. Reid IM (1972) Corpora amylacea of the bovine mammary gland. Histochemical and electron microscopic evidence for their amyloid nature. J Comp Pathol 82:409–413

    PubMed  CAS  Google Scholar 

  254. Taniyama H et al (2000) Localized amyloidosis in canine mammary tumors. Vet Pathol 37:104–107

    PubMed  CAS  Google Scholar 

  255. Gruys E (2004) Protein folding pathology in domestic animals. J Zhejiang Univ Sci 5:1226–1238

    PubMed  CAS  Google Scholar 

  256. Nickerson SC (1987) Amyloid fibril formation in the bovine mammary gland: an ultrastructural study. Cytobios 51:81–92

    PubMed  CAS  Google Scholar 

  257. Claudon C et al (1998) Proteic composition of corpora amylacea in the bovine mammary gland. Tissue Cell 30:589–595

    PubMed  CAS  Google Scholar 

  258. Niewold TA et al (1999) Casein related amyloid, characterization of a new and unique amyloid protein isolated from bovine corpora amylacea. Amyloid 6:244–249

    PubMed  CAS  Google Scholar 

  259. Farrell HM Jr et al (2003) Environmental influences on bovine kappa-casein: reduction and conversion to fibrillar (amyloid) structures. J Protein Chem 22:259–273

    PubMed  CAS  Google Scholar 

  260. Ecroyd H et al (2008) Dissociation from the oligomeric state is the rate-limiting step in fibril formation by kappa-casein. J Biol Chem 283:9012–9022

    PubMed  CAS  Google Scholar 

  261. Mosesson MW (2005) Fibrinogen and fibrin structure and functions. J Thromb Haemost 3:1894–1904

    PubMed  CAS  Google Scholar 

  262. Tang H et al (2009) Fibrinogen has chaperone-like activity. Biochem Biophys Res Commun 378:662–667

    PubMed  CAS  Google Scholar 

  263. Tang H et al (2009) Alpha(E)C, the C-terminal extension of fibrinogen, has chaperone-like activity. Biochemistry 48:3967–3976

    PubMed  CAS  Google Scholar 

  264. Zsila F (2010) Chaperone-like activity of the acute-phase component human serum α1-acid glycoprotein: inhibition of thermal- and chemical-induced aggregation of various proteins. Bioorg Med Chem Lett 20:1205–1209

    PubMed  CAS  Google Scholar 

  265. Park DC et al (2008) Clusterin interacts with paclitaxel and confers paclitaxel resistance in ovarian cancer. Neoplasia 10:964–972

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark R. Wilson .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dabbs, R.A., Wyatt, A.R., Yerbury, J.J., Ecroyd, H., Wilson, M.R. (2010). Extracellular Chaperones. In: Topics in Current Chemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2010_85

Download citation

  • DOI: https://doi.org/10.1007/128_2010_85

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

Publish with us

Policies and ethics