Skip to main content

Concepts in Projection-Reconstruction

  • Chapter
  • First Online:
Novel Sampling Approaches in Higher Dimensional NMR

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 316))

Abstract

The Achilles heel of conventional multidimensional NMR spectroscopy is the long duration of the measurements, set by the Nyquist sampling condition and the resolution requirements in the evolution dimensions. Projection-reconstruction solves this problem by radial sampling of the evolution-domain signals, relying on Bracewell’s Fourier transform slice/projection theorem to generate a set of projections at different inclinations. Reconstruction is implemented by one of three possible deterministic back-projection schemes (additive, lowest-value, or algebraic), or by a statistical model-fitting program. For simplicity the treatment focuses principally on the three-dimensional case, and then extends the analysis to four dimensions. The concept of hyperdimensional spectroscopy is described for dealing with even higher dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hernández C, Vogiatzis G, Cipolla R (2008) Multi-view photometric stereo. IEEE Trans Pattern Anal Mach Intell 30:548–554

    Article  Google Scholar 

  2. Hounsfield GN (1973) Brit J Radiol 46:1016

    Article  CAS  Google Scholar 

  3. Lauterbur PC (1973) Nature (London) 242:190

    Google Scholar 

  4. Freeman R, Kupče E (2003) J Biomol NMR 27:101–113

    Article  CAS  Google Scholar 

  5. Bracewell RN (1956) Austr J Phys 9:198

    Article  Google Scholar 

  6. Nagayama K, Bachmann P, Wüthrich K, Ernst RR (1978) J Magn Reson 31:133–148

    CAS  Google Scholar 

  7. Bodenhausen G, Ernst RR (1981) J Magn Reson 45:367–373

    CAS  Google Scholar 

  8. Bodenhausen G, Ernst RR (1982) J Am Chem Soc 104:1304–1309

    Article  CAS  Google Scholar 

  9. Ding K, Gronenborn A (2002) J Magn Reson 156:262–268

    Article  CAS  Google Scholar 

  10. Kim S, Szyperski T (2003) J Am Chem Soc 125:1385–1393

    Article  CAS  Google Scholar 

  11. Kozminski W, Zhukov I (2003) J Biomol NMR 26:157–166

    Article  CAS  Google Scholar 

  12. Kupče E, Freeman R (2003) J Biomol NMR 27:383–387

    Article  Google Scholar 

  13. Kupče E, Freeman R (2003) J Am Chem Soc 125:13958–13959

    Article  Google Scholar 

  14. Deans SR (1983) The Radon transform and some of its applications. Wiley, New York

    Google Scholar 

  15. Kupče E, Freeman R (2004) Concepts Magn Reson 22A:4–11

    Article  Google Scholar 

  16. Yoon JW, Godsill S, Kupče E, Freeman R (2006) Magn Reson Chem 44:197–209

    Article  CAS  Google Scholar 

  17. Kupče E, Freeman R (2004) J Biomol NMR 28:391–395

    Article  Google Scholar 

  18. Kupče E, Freeman R (2004) J Am Chem Soc 126:6429–6440

    Article  Google Scholar 

  19. Coggins BE, Venters RA, Zhou P (2005) J Am Chem Soc 127:11562

    Article  CAS  Google Scholar 

  20. Ables JG (1974) Astron Astrophys Suppl 15:383

    Google Scholar 

  21. Högbom JA (1974) Astron Astrophys Suppl 15:417

    Google Scholar 

  22. Shaka AJ, Keeler J, Freeman R (1984) J Magn Reson 56:294

    CAS  Google Scholar 

  23. Kupče E, Freeman R (2005) J Magn Reson 173:317–321

    Article  Google Scholar 

  24. Baumann R, Wider G, Ernst RR, Wüthrich K (1981) J Magn Reson 44:402

    CAS  Google Scholar 

  25. McIntyre L, Wu X-L, Freeman R (1990) J Magn Reson 87:194–201

    CAS  Google Scholar 

  26. Venters RA, Coggins BE, Kojetin D, Cavanagh J, Zhou P (2005) J Am Chem Soc 127:8785

    Article  CAS  Google Scholar 

  27. Ridge CD, Mandelshtam V (2010) J Biomol NMR 43:51–159

    Google Scholar 

  28. Liang Z-P, Lauterbur PC (2000) Principles of magnetic resonance imaging. A signal processing perspective. IEEE Press, New York

    Google Scholar 

  29. Hiller S, Fiorito F, Wüthrich K, Wider G (2005) Proc Natl Acad Sci USA 102:10876

    Article  CAS  Google Scholar 

  30. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH (1953) J Chem Phys 21:1087

    Article  CAS  Google Scholar 

  31. Dempster AP, Laird NM, Rubin DB (1977) J Roy Stat Soc 39:1

    Google Scholar 

  32. Andrieu C, De Freitas N, Doucet A, Jordan MI (2003) Mach Learn 50:5

    Article  Google Scholar 

  33. Green P (1995) Biometrica 82:711

    Article  Google Scholar 

  34. Freeman R, Kupče E (2004) Concepts Magn Reson 23A:63–75

    Article  CAS  Google Scholar 

  35. Kupče E, Freeman R (2006) J Am Chem Soc 128:6020–6021

    Article  Google Scholar 

  36. Kupče E, Freeman R (2008) Progr NMR Spectrosc 52:22–30

    Article  Google Scholar 

  37. Kupče E, Freeman R (2008) J Magn Reson 191:164–168

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ray Freeman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Freeman, R., Kupče, Ē. (2010). Concepts in Projection-Reconstruction. In: Billeter, M., Orekhov, V. (eds) Novel Sampling Approaches in Higher Dimensional NMR. Topics in Current Chemistry, vol 316. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2010_103

Download citation

Publish with us

Policies and ethics