Skip to main content

A Hidden Markov Technique for Haplotype Reconstruction

  • Conference paper
Algorithms in Bioinformatics (WABI 2005)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 3692))

Included in the following conference series:

Abstract

We give a new algorithm for the genotype phasing problem. Our solution is based on a hidden Markov model for haplotypes. The model has a uniform structure, unlike most solutions proposed so far that model recombinations using haplotype blocks. In our model, the haplotypes can be seen as a result of iterated recombinations applied on a few founder haplotypes. We find maximum likelihood model of this type by using the EM algorithm. We show how to solve the subtleties of the EM algorithm that arise when genotypes are generated using a haplotype model. We compare our method to the well-known currently available algorithms (phase, hap, gerbil) using some standard and new datasets. Our algorithm is relatively fast and gives results that are always best or second best among the methods compared.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Clark, A.G.: Inference of haplotypes from PCR-amplified samples of dipoid populations. Molecular Biology and Evolution 7, 111–122 (1990)

    Google Scholar 

  2. Gusfield, D.: Haplotype inference by pure parsimony. Technical Report CSE-2003-2, Department of Computer Science, University of California (2003)

    Google Scholar 

  3. Excoffier, L., Slatkin, M.: Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population. Molecular Biology and Evolution 12, 921–927 (1995)

    Google Scholar 

  4. Long, J.C., Williams, R.C., Urbanek, M.: An E-M algorithm and testing strategy for multiple-locus haplotypes. American Journal of Human genetics 56, 799–810 (1995)

    Google Scholar 

  5. Stephens, M., Smith, N., Donnelly, P.: A new statistical method for haplotype reconstruction from population data. American Journal of Human Genetics 68, 978–989 (2001)

    Article  Google Scholar 

  6. Niu, T., Qin, Z., Xu, X., Liu, J.: Bayesian haplotype inference for multiple linked single nucleotide polymorphisms. American Journal of Human Genetics 70, 157–169 (2002)

    Article  Google Scholar 

  7. Gusfield, D.: Haplotyping as perfect phylogeny: conceptual framework and efficient solutions. In: Research in Computational Molecular Biology (RECOMB 2002), pp. 166–175. ACM Press, New York (2002)

    Google Scholar 

  8. Greenspan, G., Geiger, D.: Model-based inference of haplotype block variation. In: Research in Computational Molecular Biology (RECOMB 2003), pp. 131–137. ACM Press, New York (2003)

    Google Scholar 

  9. Kimmel, G., Shamir, R.: Maximum likelihood resolution of multi-block genotypes. In: Research in Computational Molecular Biology (RECOMB 2004), pp. 2–9. ACM Press, New York (2004)

    Google Scholar 

  10. Kimmel, G., Shamir, R.: Genotype resolution and block identification using likelihood. Proceeding of the National Academy of Sciences of the United States of America (PNAS) 102, 158–162 (2005)

    Article  Google Scholar 

  11. Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE 77, 257–285 (1989)

    Article  Google Scholar 

  12. Halperin, E., Eskin, E.: Haplotype reconstruction from genotype data using imperfect phylogeny. Bioinformatics 20, 104–113 (2004)

    Article  Google Scholar 

  13. Lin, S., Cutler, D.J., Zwick, M.E., Chakravarti, A.: Haplotype inference in random population samples. American Journal of Human Genetics 71, 1129–1137 (2002)

    Article  Google Scholar 

  14. Schwartz, R., Clark, A.G., Istrail, S.: Methods for inferring block-wise ancestral history from haploid sequences. In: Guigó, R., Gusfield, D. (eds.) WABI 2002. LNCS, vol. 2452, pp. 44–59. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  15. Jojic, N., Jojic, V., Heckerman, D.: Joint discovery of haplotype blocks and complex trait associations from snp sequences. In: Proceedings of the 20th conference on Uncertainty in artificial intelligence (UAI 2004), pp. 286–292. AUAI Press (2004)

    Google Scholar 

  16. Ukkonen, E.: Finding founder sequences from a set of recombinants. In: Guigó, R., Gusfield, D. (eds.) WABI 2002. LNCS, vol. 2452, pp. 277–286. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  17. McLachlan, G.J., Krishnan, T.: The EM Algorithm and Extensions. John Wiley and Sons, Chichester (1996)

    Google Scholar 

  18. Bertsekas, D.P.: Constrained Optimization and Lagrange Multiplier Methods. Academic Press, New York (1982)

    MATH  Google Scholar 

  19. Daly, M.J., Rioux, J.D., Schaffner, S.F., et al.: High-resolution haplotype structure in the human genome. Nature Genetics 29, 229–232 (2001)

    Article  Google Scholar 

  20. Hinds, D.A., Stuve, L.L., Nilsen, G.B., et al.: Whole-genome patterns of common dna variation in three human populations. Science 307, 1072–1079 (2005)

    Article  Google Scholar 

  21. Koivisto, M., Perola, M., Varilo, T., et al.: An MDL method for finding haplotype blocks and for estimating the strength of haplotype block boundaries. In: Pacific Symposium on Biocomputing (PSB 2003), pp. 502–513. World Scientific, Singapore (2003)

    Google Scholar 

  22. Stephens, M., Scheet, P.: Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation. Americal Journal of Human Genetics 76, 449–462 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rastas, P., Koivisto, M., Mannila, H., Ukkonen, E. (2005). A Hidden Markov Technique for Haplotype Reconstruction. In: Casadio, R., Myers, G. (eds) Algorithms in Bioinformatics. WABI 2005. Lecture Notes in Computer Science(), vol 3692. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11557067_12

Download citation

  • DOI: https://doi.org/10.1007/11557067_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29008-7

  • Online ISBN: 978-3-540-31812-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics