Skip to main content

Supramolecular Polymers Based on Cyclodextrins for Drug and Gene Delivery

  • Chapter
  • First Online:
Biofunctionalization of Polymers and their Applications

Part of the book series: Advances in Biochemical Engineering / Biotechnology ((ABE,volume 125))

Abstract

Supramolecular polymers based on cyclodextrins (CDs) have inspired interesting and rapid developments as novel biomaterials in a broad range of drug and gene delivery applications, due to their low cytotoxicity, controllable size, and unique architecture. This review will summarize the potential applications of polyrotaxanes in the field of drug delivery and gene delivery. Generally, cyclodextrin-based biodegradable polypseudorotaxane hydrogels could be used as a promising injectable drug delivery system for sustained and controlled drug release. Temperature-responsive, pH-sensitive, and controllable hydrolyzable polyrotaxane hydrogels have attracted much attention because of their controllable properties, and the self-assembly micelles formed by amphiphilic copolymer threaded with CDs could be used as a carrier for controlled and sustained drug release. Polyrotaxanes with drug or ligand conjugated CDs threaded on a polymer chain with a biodegradable end group could be useful for controlled and multivalent targeted delivery. In the field of gene delivery, cationic polyrotaxanes consisting of multiple OEI-grafted CDs threaded on a block copolymer chain are attractive non-viral gene carries due to the strong DNA-binding ability, low cytotoxicity, and high gene delivery capability. Furthermore, cytocleavable end-caps were introduced in the polyrotaxane systems in order to ensure efficient endosomal escape for intracellular trafficking of DNA. The development of the supramolecular approach using CD-containing polyrotaxanes is expected to provide a new paradigm for biomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CD:

Cyclodextrin

PEI:

Polyethylenimine

OEI:

Oligoethylenimine

PEG or PEO:

Poly (ethylene glycol) or poly (ethylene oxide)

P (EO-r-PO):

Poly [(ethylene oxide)-ran-(propylene oxide)]

PEO–PHB–PEO:

PEO–poly [(R)-3-hydroxybutyrate]–PEO

PCL–PTHF–PCL:

Poly (ε-caprolactone)–poly(tetrahydrofuran)–poly(ε-caprolactone)

PNIPAAm:

Poly (N-isopropylacrylamide)

PEO–PCL:

Poly (ethylene oxide)-b-poly (ε-caprolactone)

PEG-PDMAEMA:

Poly (ethylene oxide)-block poly ((dimethylamino ethylmethacrylate)

PAMAM:

Polyamidoamine

l-Phe:

l-phenylalanine

CEE:

Carboxyethylester

DMAB:

4-(N,N-dimethylamino) benzoyl

hPEPT1:

Human peptide transporter

H–l-PheGlyGly:

l-phenylalanlycylglycine

MA:

Methacrylate

LMWP:

Low molecular weight protamine

LCST:

Lower critical solution temperatures

BAEE:

N-α-benzoyl-arginine ethylesterv

AEC:

Aminoethylcarbamoyl

DMAE:

Dimethylaminoethyl

References

  1. Li J, Loh XJ (2008) Adv Drug Deliv Rev 60(9):1000–1017

    CAS  Google Scholar 

  2. Loethen S, Kim JM, Thompson DH (2007) Polym Rev 47(3):383–418

    CAS  Google Scholar 

  3. Huang FH, Gibson HW (2005) Prog Polym Sci 30(10):982–1018

    CAS  Google Scholar 

  4. Harada A, Hashidzume A, Takashima Y (2006) Adv Polym Sci 201:1–43

    Google Scholar 

  5. Uekama K, Hirayama F, Irie T (1998) Chem Rev 98(5):2045–2076

    CAS  Google Scholar 

  6. Khan AR, Forgo P, Stine KJ, D’Souza VT (1998) Chem Rev 98(5):1977–1996

    CAS  Google Scholar 

  7. Ooya T, Yui N (1999) Crit Rev Ther Drug Carrier Syst 16(3):289–330

    CAS  Google Scholar 

  8. Nepogodiev SA, Stoddart JF (1998) Chem Rev 98(5):1959–1976

    CAS  Google Scholar 

  9. Yui N, Katoono R, Yamashita A (2009) Functional cyclodextrin polyrotaxanes for drug delivery. Springer, Berlin, p 55–77

    Google Scholar 

  10. Araki J, Ito K (2007) Soft Matter 3(12):1456–1473

    CAS  Google Scholar 

  11. Wenz G, Han BH, Muller A (2006) Chem Rev 2006 106(3):782–817

    CAS  Google Scholar 

  12. Yui N, Ooya T (2006) Chem Eur J 12(26):6730–6737

    CAS  Google Scholar 

  13. Hoffman AS (2002) Adv Drug Deliv Rev 54(1):3–12

    CAS  Google Scholar 

  14. Kim SW, Bae YH, Okano T (1992) Pharm Res 9(3):283–290

    CAS  Google Scholar 

  15. Park H, Park K (1996) Pharm Res 13(12):1770–1776

    CAS  Google Scholar 

  16. Li J (2009) Cyclodextrin inclusion polymers forming hydrogels. Springer, Berlin, p 79–112

    Google Scholar 

  17. Li J, Li X, Ni XP, Wang X, Li HZ, Leong KW (2006) Biomaterials 27(22):4132–4140

    CAS  Google Scholar 

  18. Zhao CM, Domon Y, Okumura Y, Okabe S, Shibayama M, Ito K (2005) J Phys Condens Matter 17(31):S2841–S2846

    CAS  Google Scholar 

  19. Sakai T, Murayama H, Nagano S, Takeoka Y, Kidowaki M, Ito K, Seki T (2007) Adv Mater 19(15):2023–2025.

    CAS  Google Scholar 

  20. Fleury G, Schlatter G, Brochon C, Hadziioannou G (2005) Polymer 46(19):8494–8501

    CAS  Google Scholar 

  21. Murayama H, Bin Imran A, Nagano S, Seki T, Kidowaki M, Ito K, Takeoka Y (2008) Macromolecules 41(5):1808–1814

    CAS  Google Scholar 

  22. Wei HL, He JY, Sun LG, Zhu KQ, Feng ZG (2005) Eur Polym J 41(5):948–957

    CAS  Google Scholar 

  23. Li J, Li X, Zhou ZH, Ni XP, Leong KW (2001) Macromolecules 34(21):7236–7237

    CAS  Google Scholar 

  24. Li J, Li X, Ni XP, Wang X, Li HZ, Zhou ZH (2005) Key Eng Mater 288/289:117–120

    Google Scholar 

  25. Ni XP, Cheng A, Li J (2009) J Biomed Mater Res Part A 88A(4):1031–1036

    CAS  Google Scholar 

  26. Li X, Li J (2008) J Biomed Mater Res Part A 86A(4):1055–1061

    CAS  Google Scholar 

  27. Reineke TM, Davis ME (2003) Bioconjug Chem 14(1):247–254

    CAS  Google Scholar 

  28. Reineke TM, Davis ME (2003) Bioconjug Chem 14(1):255–261

    CAS  Google Scholar 

  29. Yang C, Wang X, Li HZ, Tan E, Lim CT, Li J (2009) J Phys Chem B 113(22):7903–7911

    CAS  Google Scholar 

  30. Yang C, Li J (2009) J Phys Chem B 113(3):682–690

    CAS  Google Scholar 

  31. Li J, Yang C, Li HZ, Wang X, Goh SH, Ding JL, Wang DY, Leong KW (2006) Adv Mater 18(22):2969–2970

    CAS  Google Scholar 

  32. Yang C, Wang X, Li HZ, Goh SH, Li J (2007) Biomacromolecules 8(11):3365–3374

    CAS  Google Scholar 

  33. Ooya T, Yamashita A, Kurisawa M, Sugaya Y, Maruyama A, Yui N (2004) Sci Technol Adv Mater 5(3):363–369

    CAS  Google Scholar 

  34. Ooya T, Choi HS, Yamashita A, Yui N, Sugaya Y, Kano A, Maruyama A, Akita H, Ito R, Kogure K, Harashima H (2006) J Am Chem Soc 128(12):3852–3853

    CAS  Google Scholar 

  35. Yamashita A, Yui N, Ooya T, Kano A, Maruyama A, Akita H, Kogure K, Harashima H (2006) Nat Protoc 1(6):2861–2869

    CAS  Google Scholar 

  36. Li J, Ni XP, Leong KW (2003) J Biomed Mater Res Part A 65A(2):196–202

    CAS  Google Scholar 

  37. Wang J, Li L, Zhu YY, Liu P, Guo XH (2009) Asia Pac J Chem Eng 4(5):544–550

    CAS  Google Scholar 

  38. Li J, Harada A, Kamachi M (1994) Polym J 26(9):1019–1026

    CAS  Google Scholar 

  39. Bromberg LE, Ron ES (1998) Adv Drug Deliv Rev 31(3):197–221

    CAS  Google Scholar 

  40. Loh XJ, Goh SH, Li J (2007) Biomacromolecules 8(2):585–593

    CAS  Google Scholar 

  41. Rodriguez-Perez AI, Rodriguez-Tenreiro C, Alvarez-Lorenzo C, Concheiro A, Torres-Labandeira JJ (2006) J Nanosci Nanotechnol 6(9–10):3179–3186

    CAS  Google Scholar 

  42. Li X, Li J, Leong KW (2003) Macromolecules 36(4):1209–1214

    CAS  Google Scholar 

  43. Li X, Li J, Leong KW (2004) Polymer 45(20):6845–6851

    CAS  Google Scholar 

  44. Harada A, Li J, Kamachi M (1992) Nature 356(6367):325–327

    CAS  Google Scholar 

  45. Muller HM, Seebach D (1993) Angew Chem Int Ed Engl 32(4):477–502

    Google Scholar 

  46. Lenz RW, Marchessault RH (2005) Biomacromolecules 6(1):1–8

    CAS  Google Scholar 

  47. Li X, Loh XJ, Wang K, He CB, Li J (2005) Biomacromolecules 6(5):2740–2747

    CAS  Google Scholar 

  48. Loh XJ, Tan KK, Li X, Li J (2006) Biomaterials 27(9):1841–1850

    CAS  Google Scholar 

  49. Wang YP, Zhou L, Sun GM, Xue J, Jia ZF, Zhu XY, Yan DY (2008) J Polym Sci B Polym Phys 46(12):1114–1120

    CAS  Google Scholar 

  50. Huh KM, Ooya T, Lee WK, Sasaki S, Kwon IC, Jeong SY, Yui N (2001) Macromolecules 34(25):8657–8662

    CAS  Google Scholar 

  51. Huh KM, Cho YW, Chung H, Kwon IC, Jeong SY, Ooya T, Lee WK, Sasaki S, Yui N (2004) Macromol Biosci 4(2):92–99

    CAS  Google Scholar 

  52. Nakama T, Ooya T, Yui N (2004) Polym J 36(4):338–344

    CAS  Google Scholar 

  53. Choi HS, Kontani K, Huh KM, Sasaki S, Ooya T, Lee WK, Yui N (2002) Macromol Biosci 2(6):298–303

    CAS  Google Scholar 

  54. He LH, Huang J, Chen YM, Xu XJ, Liu LP (2005) Macromolecules 38(9):3845–3851

    CAS  Google Scholar 

  55. Okumura Y, Ito K, Hayakawa R (2000) Polym Adv Technol 11(8–12):815–819

    CAS  Google Scholar 

  56. Karino T, Okumura Y, Zhao CM, Kidowaki M, Kataoka T, Ito K, Shibayama M (2006) Macromolecules 39(26):9435–9440

    CAS  Google Scholar 

  57. Kidowaki M, Zhao CM, Kataoka T, Ito K (2006) Chem Commun 22:4102–4103

    Google Scholar 

  58. Kawabata R, Katoono R, Yamaguchi M, Yui N (2007) Macromolecules 40(4):1011–1017

    CAS  Google Scholar 

  59. Fleury G, Schlatter G, Brochon C, Travelet C, Lapp A, Lindner P, Hadziioannou G (2007) Macromolecules 40(3):535–543

    CAS  Google Scholar 

  60. Watanabe J, Ooya T, Park KD, Kim YH, Yui N (2000) J Biomater Sci Polym Ed 11(12):1333–1345

    CAS  Google Scholar 

  61. Ichi T, Ooya T, Yui N (2003) Macromol Biosci 3(7):373–380

    CAS  Google Scholar 

  62. Ichi T, Watanabe J, Ooya T, Yui N (2001) Biomacromolecules 2(1):204–210

    CAS  Google Scholar 

  63. Ichi T, Nitta K, Lee WK, Ooya T, Yui N (2003) J Biomater Sci Polym Ed 14(6):567–579

    CAS  Google Scholar 

  64. Lee WK, Ichi T, Ooya T, Yamamoto T, Katoh M, Yui N (2003) J Biomed Mater Res Part A 67A(4):1087–1092

    CAS  Google Scholar 

  65. Tachaboonyakiat W, Furubayashi T, Katoh M, Ooya T, Yui N (2004) J Biomater Sci Polym Ed 15(11):1389–1404

    CAS  Google Scholar 

  66. Ooya T, Ichi T, Furubayashi T, Katoh M, Yui N (2007) React Funct Polym 67(11):1408–1417

    CAS  Google Scholar 

  67. Ooya T, Akutsu M, Kumashiro Y, Yui N (2005) Sci Technol Adv Mater 6(5):447–451

    CAS  Google Scholar 

  68. Yoshida R, Uchida K, Kaneko Y, Sakai K, Kikuchi A, Sakurai Y, Okano T (1995) Nature 374(6519):240–242

    CAS  Google Scholar 

  69. Feng ZG, Zhao SP (2003) Polymer 44(18):5177–5186

    CAS  Google Scholar 

  70. Wei HL, Yu HQ, Zhang AY, Sun LG, Hou DD, Feng ZG (2005) Macromolecules 38(21):8833–8839

    CAS  Google Scholar 

  71. Zhang XW, Zhu XQ, Ke FY, Ye L, Chen EQ, Zhang AY, Feng ZG (2009) Polymer 50(18):4343–4351

    CAS  Google Scholar 

  72. Adams ML, Andes DR, Kwon GS (2003) Biomacromolecules 4(3):750–757

    CAS  Google Scholar 

  73. Huang J, Ren LX, Zhu H, Chen YM (2006) Macromol Chem Phys 207(19):1764–1772

    CAS  Google Scholar 

  74. Yuan RX, Shuai XT (2008) J Polym Sci B Polym Phys 46(8):782–790

    CAS  Google Scholar 

  75. Ooya T, Yui N (1999) J Control Release 58(3):251–269

    CAS  Google Scholar 

  76. Mammen M, Choi SK, Whitesides GM (1998) Angew Chem Int Ed Engl 37(20):2755–2794

    CAS  Google Scholar 

  77. Cairo CW, Gestwicki JE, Kanai M, Kiessling LL (2002) J Am Chem Soc 124(8):1615–1619

    CAS  Google Scholar 

  78. Nelson A, Belitsky JM, Vidal S, Joiner CS, Baum LG, Stoddart JF (2004) J Am Chem Soc 126(38):11914–11922

    CAS  Google Scholar 

  79. Nelson A, Stoddart JF (2003) Org Lett 5(21):3783–3786

    CAS  Google Scholar 

  80. Ooya T, Yui N (2002) J Control Release 80(1–3):219–228

    CAS  Google Scholar 

  81. Ito A, Ooya T, Yui N (2007) J Incl Phenom Macrocycl Chem 57(1–4):233–236

    CAS  Google Scholar 

  82. Ooya T, Eguchi M, Yui N (2003) J Am Chem Soc 125(43):13016–13017

    CAS  Google Scholar 

  83. Ooya T, Utsunomiya H, Eguchi M, Yui N (2005) Bioconjug Chem 16(1):62–69

    CAS  Google Scholar 

  84. Yui N, Ooya T, Kawashima T, Saito Y, Tamai I, Sai Y, Tsuji A (2002) Bioconjug Chem 13(3):582–587

    CAS  Google Scholar 

  85. Ooya T, Eguchi M, Ozaki A, Yui N (2002) Int J Pharm 242(1–2):47–54

    CAS  Google Scholar 

  86. Eguchi M, Ooya T, Yui N (2004) J Control Release 96(2):301–307

    CAS  Google Scholar 

  87. Nakashima N, Murakami H, Kawamura M, Kouso D, Narikiyo Y, Matsumoto R, Okuyama K (1999) Polym J 31(11):1089–1094

    CAS  Google Scholar 

  88. Ooya T, Mori H, Terano M, Yui N (1995) Macromol Rapid Commun 16(4):259–263

    CAS  Google Scholar 

  89. Ooya T, Yui N (1997) J Biomater Sci Polym Ed 8(6):437–455

    CAS  Google Scholar 

  90. Watanabe J, Ooya T, Yui N (1999) J Biomater Sci Polym Ed 10(12):1275–1288

    CAS  Google Scholar 

  91. Moon C, Kwon YM, Lee WK, Park YJ, Yang VC (2007) J Control Release 124(1–2):43–50

    CAS  Google Scholar 

  92. Yui N, Ooya T, Kumeno T (1998) Bioconjug Chem 9(1):118–125

    CAS  Google Scholar 

  93. Joung YK, Sengoku Y, Ooya T, Park KD, Yui N (2005) Sci Technol Adv Mater 6(5):484–490

    CAS  Google Scholar 

  94. Parl HD, Lee WK, Ooya T, Park KD, Kim YH, Yui N (2003) J Biomed Mater Res Part A 66A(3):596–604

    Google Scholar 

  95. Kamimura W, Ooya T, Yui N (1997) J Control Release 44(2–3):295–299

    CAS  Google Scholar 

  96. Ohya Y, Takamido S, Nagahama K, Ouchi T, Katoono R, Yui N (2009) Biomacromolecules 10(8):2261–2267

    CAS  Google Scholar 

  97. Ooya T, Arizono K, Yui N (2000) Polym Adv Technol 11(8–12):642–651

    CAS  Google Scholar 

  98. Ooya T, Eguchi M, Yui N (2001) Biomacromolecules 2(1):200–203

    CAS  Google Scholar 

  99. Ooya T, Ito A, Yui N (2005) Macromol Biosci 5(5):379–383

    CAS  Google Scholar 

  100. Loethen S, Ooya T, Choi HS, Yui N, Thompson DH (2006) Biomacromolecules 7(9):2501–2506

    CAS  Google Scholar 

  101. Nishiyama N, Iriyama A, Jang WD, Miyata K, Itaka K, Inoue Y, Takahashi H, Yanagi Y, Tamaki Y, Koyama H, Kataoka K (2005) Nat Mater 4(12):934–941

    CAS  Google Scholar 

  102. Smith DK (2005) J Chem Educ 82(3):393–400

    CAS  Google Scholar 

  103. Dass CR (2002) J Pharm Pharmacol 54(1):3–27

    CAS  Google Scholar 

  104. Gonzalez H, Hwang SJ, Davis ME (1999) Bioconjug Chem 10(6):1068–1074

    CAS  Google Scholar 

  105. Davis ME, Brewster ME (2004) Nat Rev Drug Discov 3(12):1023–1035

    CAS  Google Scholar 

  106. Popielarski SR, Mishra S, Davis ME (2003) Bioconjug Chem 14(3):672–678

    CAS  Google Scholar 

  107. Pack DW, Hoffman AS, Pun S, Stayton PS (2005) Nat Rev Drug Discov 4(7):581–593

    CAS  Google Scholar 

  108. Pun SH, Davis ME (2002) Bioconjug Chem 13(3):630–639

    CAS  Google Scholar 

  109. Pun SH, Bellocq NC, Liu AJ, Jensen G, Machemer T, Quijano E, Schluep T, Wen SF, Engler H, Heidel J, Davis ME (2004) Bioconjug Chem 15(4):831–840

    CAS  Google Scholar 

  110. Tang GP, Guo HY, Alexis F, Wang X, Zeng S, Lim TM, Ding J, Yang YY, Wang S (2006) J Gene Med 8(6):736–744

    CAS  Google Scholar 

  111. Kihara F, Arima H, Tsutsumi T, Hirayama F, Uekama K (2002) Bioconjug Chem 13(6):1211–1219

    CAS  Google Scholar 

  112. Wada K, Arima H, Tsutsumi T, Chihara Y, Hattori K, Hirayama F, Uekama K (2005) J Control Release 104(2):397–413

    CAS  Google Scholar 

  113. Arima H, Kihara F, Hirayama F, Uekama K (2001) Bioconjug Chem 12(4):476–484

    CAS  Google Scholar 

  114. Kihara F, Arima H, Tsutsumi T, Hirayama F, Uekama K (2003) Bioconjug Chem 14(2):342–350

    CAS  Google Scholar 

  115. Arima H, Yunomae K, Morikawa T, Hirayama F, Uekama K (2004) Pharm Res 21(4):625–634

    CAS  Google Scholar 

  116. Arima H, Chihara Y, Arizono M, Yamashita S, Wada K, Hirayama F, Uekama K (2006) J Control Release 116(1):64–74

    CAS  Google Scholar 

  117. Yang CA, Li HZ, Goh SH, Li J (2007) Biomaterials 28(21):3245–3254

    CAS  Google Scholar 

  118. Diaz-Moscoso A, Le Gourrierec L, Gomez-Garcia M, Benito JM, Balbuena P, Ortega-Caballero F, Guilloteau N, Di Giorgio C, Vierling P, Defaye J, Mellet CO, Fernandez JMG (2009) Chem Eur J 15(46):12871–12888

    CAS  Google Scholar 

  119. Harada A, Okada M, Li J, Kamachi M (1995) Macromolecules 28(24):8406–8411

    CAS  Google Scholar 

  120. Yang CA, Li HZ, Wang X, Li J (2009) J Biomed Mater Res Part A 89A(1):13–23

    CAS  Google Scholar 

  121. Merdan T, Kopecek J, Kissel T (2002) Adv Drug Deliv Rev 54(5):715–758

    CAS  Google Scholar 

  122. Shuai XT, Merdan T, Unger F, Kissel T (2005) Bioconjug Chem 16(2):322–329

    CAS  Google Scholar 

  123. Saito G, Swanson JA, Lee KD (2003) Adv Drug Deliv Rev 55(2):199–215

    CAS  Google Scholar 

  124. Yamashita A, Kanda D, Katoono R, Yui N, Ooya T, Maruyama A, Akita H, Kogure K, Harashima H (2008) J Control Release 131(2):137–144

    CAS  Google Scholar 

  125. Yamashita A, Choi HS, Ooya T, Yui N, Akita H, Kogure K, Harashima H (2006) Chembiochem 7(2):297–302

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Li, J.J., Zhao, F., Li, J. (2010). Supramolecular Polymers Based on Cyclodextrins for Drug and Gene Delivery. In: Nyanhongo, G., Steiner, W., Gübitz, G. (eds) Biofunctionalization of Polymers and their Applications. Advances in Biochemical Engineering / Biotechnology, vol 125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2010_91

Download citation

Publish with us

Policies and ethics