Skip to main content

Large Scale Production of Stem Cells and Their Derivatives

  • Chapter
  • First Online:
Engineering of Stem Cells

Part of the book series: Advances in Biochemical Engineering / Biotechnology ((ABE,volume 114))

Abstract

Stem cells have been envisioned to become an unlimited cell source for regenerative medicine. Notably, the interest in stem cells lies beyond direct therapeutic applications. They might also provide a previously unavailable source of valuable human cell types for screening platforms, which might facilitate the development of more efficient and safer drugs. The heterogeneity of stem cell types as well as the numerous areas of application suggests that differential processes are mandatory for their in vitro culture. Many of the envisioned applications would require the production of a high number of stem cells and their derivatives in scalable, well-defined and potentially clinical compliant manner under current good manufacturing practice (cGMP). In this review we provide an overview on recent strategies to develop bioprocesses for the expansion, differentiation and enrichment of stem cells and their progenies, presenting examples for adult and embryonic stem cells alike.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

(NOD/SCID):

miceNonobese diabetic/severe combined immunodeficient

(RWV):

bioreactorRotating wall vessel

bFGF, FGF-2:

Basic fibroblast growth factor

BM:

Bone marrow

BMP:

Bone morphogenetic protein

BMP:

Morphogenetic protein

cGMP:

Current good manufacturing practice

CHO:

Hamster ovary cells

EBs:

Embryoid bodies

ESC:

Embryonic stem cells

GM-CSF:

Granulocyte macrophage colony stimulating factor

hESC:

Human embryonic stem cell

hNPC:

Neural precursor cells

HSC:

Hematopoietic stem and progenitor cells

LIF:

Leukemia inhibitory factor bone

MASC:

Magnetic activated cell sorting

MI:

Myocardial infarction

MSC:

Mesenchymal stem cells

NSC:

Neural stem cells

PB:

(Mobilized) Peripheral blood

SCF:

Stem cell factor

SNM`:

Spherical neural masses

TGF-beta:

Transforming growth factor beta

UCB:

Umbilical cord blood

References

  1. Mathers JP (1998) Laboratory scaleup of cell cultures (0.5–50 liters). Methods Cell Biol 57:219–227

    CAS  Google Scholar 

  2. Griffiths B (2001) Scale-up of suspension and anchorage-dependent animal cells. Mol Biotechnol 17(3):225–238

    CAS  Google Scholar 

  3. Warnock JN, Al-Rubeai M (2006) Bioreactor systems for the production of biopharmaceuticals from animal cells. Biotechnol Appl Biochem 45(Pt 1):1–12

    CAS  Google Scholar 

  4. Yang JD, Lu C, Stasny B, Henley J, Guinto W, Gonzalez C, Gleason J, Fung M, Collopy B, Benjamino M, Gangi J, Hanson M, Ille E (2007) Fed-batch bioreactor process scale-up from 3-L to 2,500-L scale for monoclonal antibody production from cell culture. Biotechnol Bioeng 98(1):141–154

    CAS  Google Scholar 

  5. Parson AB (2008) Stem cell biotech: seeking a piece of the action. Cell 132(4):511–513

    CAS  Google Scholar 

  6. Kajstura J, Leri A, Finato N, Di Loreto C, Beltrami CA, Anversa P (1998) Myocyte proliferation in end-stage cardiac failure in humans. Proc Natl Acad Sci U S A 95(15):8801

    CAS  Google Scholar 

  7. Schroeder M, Niebruegge S, Werner A, Willbold E, Burg M, Ruediger M, Field LJ, Lehmann J, Zweigerdt R (2005) Embryonic stem cell differentiation and lineage selection in a stirred bench scale bioreactor with automated process control. Biotechnol Bioeng 92(7):920

    CAS  Google Scholar 

  8. Murry CE, Reinecke H, Pabon HE (2006) Regeneration gaps: observations on stem cells and cardiac repair. J Am Coll Cardiol 47(9):1777

    Google Scholar 

  9. Emamaullee JA, Shapiro AM (2007) Factors influencing the loss of beta-cell mass in islet transplantation. Cell Transplant 16(1):1–8

    Google Scholar 

  10. Docherty K, Bernardo AS, Vallier L (2007) Embryonic stem cell therapy for diabetes mellitus. Semin Cell Dev Biol 18(6):827–838

    CAS  Google Scholar 

  11. Ballen K, Broxmeyer HE, McCullough J, Piaciabello W, Rebulla P, Verfaillie CM, Wagner JE (2001) Current status of cord blood banking and transplantation in the United States and Europe. Biol Blood Marrow Transplant 7(12):635–645

    CAS  Google Scholar 

  12. McNiece I (2007) Delivering cellular therapies: lessons learned from ex vivo culture and clinical applications of hematopoietic cells. Semin Cell Dev Biol 18(6):839–845

    CAS  Google Scholar 

  13. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147. Erratum in: Science 1998 Dec 4;282(5395):1827

    CAS  Google Scholar 

  14. Murry CE, Field LJ, Menasche P (2005) Cell-based cardiac repair: reflections at the 10-year point. Circulation 112(20):3174–3183

    Google Scholar 

  15. Zweigerdt R (2007) The art of cobbling a running pump–will human embryonic stem cells mend broken hearts? Semin Cell Dev Biol 18(6):794–804

    CAS  Google Scholar 

  16. Rosenzweig A (2006) Cardiac cell therapy—mixed results from mixed cells. N Engl J Med 355(12):1274–1277

    CAS  Google Scholar 

  17. Schwartz RS (2006) The politics and promise of stem-cell research. N Engl J Med 355(12):1189–1191

    CAS  Google Scholar 

  18. Arnesen H, Lunde K, Aakhus S, Forfang K (2007) Cell therapy in myocardial infarction. Lancet 369(9580):2142–2143

    Google Scholar 

  19. Orlic D, Kajstura J, Chimenti S et al (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410(6829):701–705

    CAS  Google Scholar 

  20. Kawada H, Fujita J, Kinjo K, Matsuzaki Y, Tsuma M, Miyatake H, Muguruma Y, Tsuboi K, Itabashi Y, Ikeda Y, Ogawa S, Okano H, Hotta T, Ando K, Fukuda K (2004) Nonhematopoietic mesenchymal stem cells can be mobilized and differentiate into cardiomyocytes after myocardial infarction. Blood 104(12):3581

    CAS  Google Scholar 

  21. Miyahara Y, Nagaya N, Kataoka M, Yanagawa B, Tanaka K, Hao H, Ishino K, Ishida H, Shimizu T, Kangawa K, Sano S, Okano T, Kitamura S, Mori H (2006) Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat Med 12(4):459–465

    CAS  Google Scholar 

  22. Murry CE, Soonpaa MH, Reinecke H, Nakajima H, Nakajima HO, Rubart M et al (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428(6983):664–668

    CAS  Google Scholar 

  23. Balsam LB, Wagers AJ, Christensen JL, Kofidis T, Weissman IL, Robbins RC (2004) Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428(6983):668–673

    CAS  Google Scholar 

  24. Breitbach M, Bostani T, Roell W, Xia Y, Dewald O, Nygren JM, Fries JW, Tiemann K, Bohlen H, Hescheler J, Welz A, Bloch W, Jacobsen SE, Fleischmann BK (2007) Potential risks of bone marrow cell transplantation into infarcted hearts. Blood 110(4):1362–1369

    CAS  Google Scholar 

  25. Rubin LL (2008) Stem cells and drug discovery: the beginning of a new era? Cell 132(4):549–552

    CAS  Google Scholar 

  26. Laflamme MA, Chen KY, Naumova AV et al (2007) Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 25(9):1015–1024

    CAS  Google Scholar 

  27. van Laake LW, Passier R, Monshouwer-Kloots J et al (2007) Human embryonic stem cell-derived cardiomyocytes survive and mature in the mouse heart and transiently improve function after myocardial infarction. Stem Cell Res 1:9–24

    Google Scholar 

  28. Phillips BW, Hentze H, Rust WL, Chen QP, Chipperfield H, Tan EK, Abraham S, Sadasivam A, Soong PL, Wang ST, Lim R, Sun W, Colman A, Dunn NR (2007) Directed differentiation of human embryonic stem cells into the pancreatic endocrine lineage. Stem Cells Dev 16(4):561–578

    CAS  Google Scholar 

  29. Schugar RC, Robbins PD, Deasy BM (2008) Small molecules in stem cell self-renewal and differentiation. Gene Ther 15(2):126–135

    CAS  Google Scholar 

  30. Fong WJ, Tan HL, Choo A, Oh SK (2005) Perfusion cultures of human embryonic stem cells. Bioprocess Biosyst Eng 27(6):381–387

    CAS  Google Scholar 

  31. van Wezel AL (1976) The large-scale cultivation of diploid cell strains in microcarrier culture. Improvement of microcarriers. Dev Biol Stand 37:143–147

    CAS  Google Scholar 

  32. Röder B, Zühlke A, Widdecke H, Klein J (1993) Synthesis and application of new microcarriers for animal cell culture. Part II. Application of polystyrene microcarriers. J Biomater Sci Polym Ed 5(1–2):79–88

    Google Scholar 

  33. Lim HS, Han BK, Kim JH, Peshwa MV, Hu WS (1992) Spatial distribution of mammalian cells grown on macroporous microcarriers with improved attachment kinetics. Biotechnol Prog 8(6):486–493

    CAS  Google Scholar 

  34. Koller MR, Papoutsakis ET (1995) Cell adhesion in animal cell culture: physiological and fluid-mechanical implications. Bioprocess Technol 20:61–110

    CAS  Google Scholar 

  35. Banu N, Rosenzweig M, Kim H, Bagley J, Pykett M (2001) Cytokine-augmented culture of haematopoietic progenitor cells in a novel three-dimensional cell growth matrix. Cytokine 13(6):349–358

    CAS  Google Scholar 

  36. Wang TY, Brennan JK, Wu JH (1995) Multilineal hematopoiesis in a three-dimensional murine long-term bone marrow culture. Exp Hematol 23(1):26–32

    CAS  Google Scholar 

  37. Fernandes AM, Fernandes TG, Diogo MM, da Silva CL, Henrique D, Cabral JM (2007) Mouse embryonic stem cell expansion in a microcarrier-based stirred culture system. J Biotechnol 132(2):227–236

    CAS  Google Scholar 

  38. Abranches E, Bekman E, Henrique D, Cabral JM (2007) Expansion of mouse embryonic stem cells on microcarriers. Biotechnol Bioeng 96(6):1211–1221

    CAS  Google Scholar 

  39. Panoskaltsis N, Mantalaris A, Wu JH (2005) Engineering a mimicry of bone marrow tissue ex vivo. J Biosci Bioeng 100(1):28–35

    CAS  Google Scholar 

  40. Sardonini, CA, Wu, YJ (1993) Expansion and differentiation of human hematopoietic cells from static cultures though smallscale bioreactors. Biotechnol Prog 9(2):131–137

    CAS  Google Scholar 

  41. Hammond TG, Hammond JM (2001) Optimized suspension culture: the rotating-wall vessel. Am J Physiol Renal Physiol 281(1):F12–F25

    CAS  Google Scholar 

  42. Singh H, Teoh SH, Low HT, Hutmacher DW (2005) Flow modelling within a scaffold under the influence of uni-axial and bi-axial bioreactor rotation. J Biotechnol 119(2):181–196

    CAS  Google Scholar 

  43. Hutmacher DW, Singh H (2008) Computational fluid dynamics for improved bioreactor design and 3D culture. Trends Biotechnol 26(4):166–172

    CAS  Google Scholar 

  44. Orkin SH, Zon LI (2008) Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132(4):631–644

    CAS  Google Scholar 

  45. Thomas ED, Lochte HL Jr, Lu WC, Ferrebee JW (1957) Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy. N Engl J Med 257(11):491–496

    CAS  Google Scholar 

  46. Sheridan WP, Begley CG, Juttner CA, Szer J, To LB, Maher D, McGrath KM, Morstyn G, Fox RM (1992) Effect of peripheral-blood progenitor cells mobilised by filgrastim (G-CSF) on platelet recovery after high-dose chemotherapy. Lancet 339(8794):640–644

    CAS  Google Scholar 

  47. Gluckman E, Broxmeyer HA, Auerbach AD, Friedman HS, Douglas GW, Devergie A, Esperou H, Thierry D, Socie G, Lehn P et al (1989) Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical-cord blood from an HLA-identical sibling. N Engl J Med 321(17):1174–1178

    CAS  Google Scholar 

  48. Kay HEM (1965) How many cell-generations? Lancet 56:418–419

    Google Scholar 

  49. Prchal JT, Prchal JF, Belickova M, Chen S, Guan Y, Gartland GL, Cooper MD (1996) Clonal stability of blood cell lineages indicated by X-chromosomal transcriptional polymorphism. J Exp Med 183(2):561–567

    CAS  Google Scholar 

  50. Lansdorp PM (2008) Telomeres, stem cells, and hematology. Blood 111(4):1759–1766

    CAS  Google Scholar 

  51. Ito K, Hirao A, Arai F, Takubo K, Matsuoka S, Miyamoto K, Ohmura M, Naka K, Hosokawa K, Ikeda Y, Suda T (2006) Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat Med 12(4):446–451

    CAS  Google Scholar 

  52. Andrews RG, Singer JW, Bernstein ID (1989) Precursors of colony-forming cells in humans can be distinguished from colony-forming cells by expression of CD33 and CD34 antigen and light scatter properties. J Exp Med 169(5):1721–1731

    CAS  Google Scholar 

  53. Krause DS, Fackler MJ, Civin CI, May WS (1996) CD34: structure, biology, and clinical utility. Blood 87(1):1–13

    CAS  Google Scholar 

  54. Coulombel L (2004) Identification of hematopoietic stem/progenitor cells: strength and drawbacks of functional assays. Oncogene 23(43):7210–7222.

    CAS  Google Scholar 

  55. Morrison SJ, Spradling AC (2008) Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 132(4):598–611

    CAS  Google Scholar 

  56. Dexter TM, Allen TD, Lajtha LG (1977) Conditions controlling the proliferation of haemopoietic stem cells in vitro. J Cell Physiol 91:335–344

    CAS  Google Scholar 

  57. Mayani H, Gutierrez-Rodriguez M, Espinoza L, Lopez-Chalini E, Huerta-Zepeda A, Flores E, Sanchez-Valle E, Luna-Bautista F, Valencia I, Ramirez OT (1998) Kinetics of hematopoiesis in Dextertype long-term cultures established from human umbilical cord blood cells. Stem Cells 16:127–135

    CAS  Google Scholar 

  58. Nolta JA, Thiemann FT, Arakawa-Hoyt J, Dao MA, Barsky LW, Moore KA, Lemischka IR, Crooks GM (2002) The AFT024 stromal cell line supports long-term ex vivo maintenance of engrafting multipotent human hematopoietic progenitors. Leukemia 16:352–361

    CAS  Google Scholar 

  59. Zhang CC, Kaba M, Ge G, Xie K, Tong W, Hug C, Lodish HF (2006) Angiopoietin-like proteins stimulate ex vivo expansion of hematopoietic stem cells. Nat Med 12:240–245

    Google Scholar 

  60. Heike T, Nakahata T (2002) Ex vivo expansion of hematopoietic stem cells by cytokines. Biochim Biophys Acta 1592:313–321

    CAS  Google Scholar 

  61. Noll, T, Jelinek, N, Schmidt, S, Biselli, M, Wandrey, C (2002) Cultivation of hematopoietic stem and progenitor cells: biochemical engineering aspects. Adv Biochem Eng Biotechnol 74:111–128

    CAS  Google Scholar 

  62. Koller MR, anchel I, Brott DA, Palsson Bø (1996) Donor-to-donor variability in the expansion potential of human bone marrow cells is reduced by accessory cells but not by soluble growth factors. Exp Hematol 24(13):1484–1493

    CAS  Google Scholar 

  63. Kohler T, Plettig R, Wetzstein W, Schaffer B, Ordemann R, Nagels HO, Ehninger G, Bornhauser M (1999) Defining optimum conditions for the ex vivo expansion of human umbilical cord blood cells. Influences of progenitor enrichment, interference with feeder layers, early-acting cytokines and agitation of culture vessels. Stem Cells 17:19–24

    CAS  Google Scholar 

  64. Xu R, Medchill M, Reems JA (2000) Serum supplement, inoculum density, and accessory cell effects are dependant on the cytokine combination selected to expand human HPCs ex vivo. Transfusion 40:1299–1307

    CAS  Google Scholar 

  65. Majka M, Janowska-Wieczorek A, Ratajczak J, Ehrenman K, Pietrzkowski Z, Kowalska MA, Gewirtz AM, Emerson SG, Ratajczak MZ (2001) Numerous growth factors, cytokines, and chemokines are secreted by human CD34(+) cells, myeloblasts, erythroblasts, and megakaryoblasts and regulate normal hematopoiesis in an autocrine/paracrine manner. Blood 97:3075–3085

    CAS  Google Scholar 

  66. Madlambayan GJ, Rogers I, Kirouac DC, Yamanaka N, Mazurier F, Doedens M, Casper RF, Dick JE, Zandstra PW (2005) Dynamic changes in cellular and microenvironmental composition can be controlled to elicit in vitro human hematopoietic stem cell expansion. Exp Hematol 33(10):1229–1239. Erratum in: Exp Hematol 2006 Jan;34(1):122

    CAS  Google Scholar 

  67. Madlambayan GJ, Rogers I, Purpura KA, Ito C, Yu M, Kirouac D, Casper RF, Zandstra PW (2006) Clinically relevant expansion of hematopoietic stem cells with conserved function in a single-use, closed-system bioprocess. Biol Blood Marrow Transplant 12(10):1020–1030

    Google Scholar 

  68. Nielsen LK (1999) Bioreactors for hematopoietic cell culture. Annu Rev Biomed Eng 1:129–152

    CAS  Google Scholar 

  69. Cabrita GJ, Ferreira BS, da Silva CL, Goncalves R, Almeida- Porada G, Cabral JM (2003) Hematopoietic stem cells: from the bone to the bioreactor. Trends Biotechnol 21(5):233–240

    CAS  Google Scholar 

  70. Collins PC, Nielsen LK, Patel SD, Papoutsakis ET, Miller WM (1998) Characterization of hematopoietic cell expansion, oxygen uptake, and glycolysis in a controlled, stirred-tank bioreactor system. Biotechnol Prog 14(3):466–472

    CAS  Google Scholar 

  71. Kim BS (1998) Production of human hematopoietic progenitors in a clinical-scale stirred suspension bioreactor. Biotechnol Lett 20(6):595–601

    CAS  Google Scholar 

  72. Meissner P, Schroder B, Herfurth C, Biselli M (1999) Development of a fixed bed bioreactor for the expansion of human hematopoietic progenitor cells. Cytotechnology 30:227–234

    CAS  Google Scholar 

  73. Koller MR, Emerson SG, Palsson BO (1993) Large-scale expansion of human stem and progenitor cells from bone mar row mononuclear cells in continuous perfusion cultures. Blood 82(2):378–384

    CAS  Google Scholar 

  74. Liu Y, Liu T, Fan X, Ma X, Cui Z (2006) Ex vivo expansion of hematopoietic stem cells derived from umbilical cord blood in rotating wall vessel. J Biotechnol 124(3):592–601

    CAS  Google Scholar 

  75. Kirouac DC, Zandstra PW (2006) Understanding cellular networks to improve hematopoietic stem cell expansion cultures. Curr Opin Biotechnol 17(5):538–547

    CAS  Google Scholar 

  76. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292(5819):154–156

    CAS  Google Scholar 

  77. Thomson JA, Kalishman J, Golos TG, Durning M, Harris CP, Becker RA, Hearn JP (1995) Isolation of a primate embryonic stem cell line. Proc Natl Acad Sci U S A 92(17):7844–7848

    CAS  Google Scholar 

  78. Oh SK, Choo AB (2006) Human embryonic stem cells: technological challenges towards therapy. Clin Exp Pharmacol Physiol 33(5–6):489–495

    CAS  Google Scholar 

  79. Dahéron L, Opitz SL, Zaehres H, Lensch MW, Andrews PW, Itskovitz-Eldor J, Daley GQ (2004) LIF/STAT3 signaling fails to maintain self-renewal of human embryonic stem cells. Stem Cells 22(5):770–778

    Google Scholar 

  80. Liu N, Lu M, Tian X, Han Z (2007) Molecular mechanisms involved in self-renewal and pluripotency of embryonic stem cells. J Cell Physiol 211(2):279–286

    CAS  Google Scholar 

  81. Babaie Y, Herwig R, Greber B, Brink TC, Wruck W, Groth D, Lehrach H, Burdon T, Adjaye J (2007) Analysis of Oct4-dependent transcriptional networks regulating self-renewal and pluripotency in human embryonic stem cells. Stem Cells 25(2):500–510

    CAS  Google Scholar 

  82. Ilic D (2006) Culture of human embryonic stem cells and the extracellular matrix microenvironment. Regen Med 1(1):95–101

    CAS  Google Scholar 

  83. Sasaki N, Okishio K, Ui-Tei K, Saigo K, Kinoshita-Toyoda A, Toyoda H, Nishimura T, Suda Y, Hayasaka M, Hanaoka K, Hitoshi S, Ikenaka K, Nishihara S (2008) Heparan sulfate regulates self-renewal and pluripotency of embryonic stem cells. J Biol Chem 283(6):3594–3606

    CAS  Google Scholar 

  84. Phillips BW, Lim RY, Tan TT, Rust WL, Crook JM (2008) Efficient expansion of clinical-grade human fibroblasts on microcarriers: cells suitable for ex vivo expansion of clinical-grade hESCs. J Biotechnol 134(1–2):79–87

    CAS  Google Scholar 

  85. Crook JM, Peura TT, Kravets L, Bosman AG, Buzzard JJ, Horne R, Hentze H, Dunn NR, Zweigerdt R, Chua F, Upshall A, Colman A (2007) The generation of six clinical-grade human embryonic stem cell lines. Cell Stem Cell 1(5):490–494

    CAS  Google Scholar 

  86. Martin MJ, Muotri A, Gage F, Varki A (2005) Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat Med 11(2):228–232

    CAS  Google Scholar 

  87. Hisamatsu-Sakamoto M, Sakamoto N, Rosenberg AS (2008) Embryonic stem cells cultured in serum-free medium acquire bovine apolipoprotein B-100 from feeder cell layers and serum replacement medium. Stem Cells 26(1):72–78

    CAS  Google Scholar 

  88. Sperger JM, Chen X, Draper JS, Antosiewicz JE, Chon CH, Jones SB, Brooks JD, Andrews PW, Brown PO, Thomson JA (2003) Gene expression patterns in human embryonic stem cells and human pluripotent germ cell tumors. Proc Natl Acad Sci U S A 100(23):13350–13355

    CAS  Google Scholar 

  89. Enver T, Soneji S, Joshi C, Brown J, Iborra F, Orntoft T, Thykjaer T, Maltby E, Smith K, Dawud RA, Jones M, Matin M, Gokhale P, Draper J, Andrews PW (2005) Cellular differentiation hierarchies in normal and culture-adapted human embryonic stem cells. Hum Mol Genet 14(21):3129–3140

    CAS  Google Scholar 

  90. International Stem Cell Initiative, Adewumi O, Aflatoonian B, Ahrlund-Richter L, Amit M, Andrews PW, Beighton G, Bello PA, Benvenisty N, Berry LS, Bevan S, Blum B, Brooking J, Chen KG, Choo AB, Churchill GA, Corbel M, Damjanov I, Draper JS, Dvorak P, Emanuel-sson K, Fleck RA, Ford A, Gertow K, Gertsenstein M, Gokhale PJ, Hamilton RS, Hampl A, Healy LE, Hovatta O, Hyllner J, Imreh MP, Itskovitz-Eldor J, Jackson J, Johnson JL, Jones M, Kee K, King BL, Knowles BB, Lako M, Lebrin F, Mallon BS, Manning D, Mayshar Y, McKay RD, Michalska AE, Mikkola M, Mileikovsky M, Minger SL, Moore HD, Mummery CL, Nagy A, Nakatsuji N, O’Brien CM, Oh SK, Olsson C, Otonkoski T, Park KY, Passier R, Patel H, Patel M, Pedersen R, Pera MF, Piekarczyk MS, Pera RA, Reubinoff BE, Robins AJ, Rossant J, Rugg-Gunn P, Schulz TC, Semb H, Sherrer ES, Siemen H, Stacey GN, Stojkovic M, Suemori H, Szatkiewicz J, Turetsky T, Tuuri T, van den Brink S, Vintersten K, Vuoristo S, Ward D, Weaver TA, Young LA, Zhang W (2007) Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat Biotechnol 25(7):803–816

    CAS  Google Scholar 

  91. Rugg-Gunn PJ, Ferguson-Smith AC, Pedersen RA (2005) Epigenetic status of human embryonic stem cells. Nat Genet 37(6):585–587

    Google Scholar 

  92. Hall LL, Byron M, Butler J, Becker KA, Nelson A, Amit M, Itskovitz-Eldor J, Stein J, Stein G, Ware C, Lawrence JB (2008) X-inactivation reveals epigenetic anomalies in most hESC but identifies sublines that initiate as expected. J Cell Physiol 216(2):445-452

    CAS  Google Scholar 

  93. Ginis I, Luo Y, Miura T, Thies S, Brandenberger R, Gerecht-Nir S, Amit M, Hoke A, Carpenter MK, Itskovitz-Eldor J, Rao MS (2004) Differences between human and mouse embryonic stem cells. Dev Biol 269(2):360–380

    CAS  Google Scholar 

  94. Draper JS, Smith K, Gokhale P, Moore HD, Maltby E, Johnson J, Meisner L, Zwaka TP, Thomson JA, Andrews PW (2004) Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat Biotechnol 22(1):53–54

    CAS  Google Scholar 

  95. Joannides A, Fiore-Heriche C, Westmore K, Caldwell M, Compston A, Allen N, Chandran S (2006) Automated mechanical passaging: a novel and efficient method for human embryonic stem cell expansion. Stem Cells 24(2):230–235

    Google Scholar 

  96. http://www.invitrogen.com/downloads/stempro-ez-brochure.pdf

  97. Baker DE, Harrison NJ, Maltby E, Smith K, Moore HD, Shaw PJ, Heath PR, Holden H, Andrews PW (2007) Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nat Biotechnol 25(2):207–215

    CAS  Google Scholar 

  98. Hasegawa K, Fujioka T, Nakamura Y, Nakatsuji N, Suemori H (2006) A method for the selection of human embryonic stem cell sublines with high replating efficiency after single-cell dissociation. Stem Cells 24(12):2649–2660

    CAS  Google Scholar 

  99. Ellerstrom C, Strehl R, Noaksson K, Hyllner J, Semb H (2007) Facilitated expansion of human embryonic stem cells by single cell enzymatic dissociation. Stem Cells 25(7):1690–1696

    Google Scholar 

  100. Braam SR, Denning C, van den Brink S, Kats P, Hochstenbach R, Passier R, Mummery CL (2008) Improved genetic manipulation of human embryonic stem cells. Nat Methods 5(5):389–392

    CAS  Google Scholar 

  101. Thomson A, Wojtacha D, Hewitt Z, Priddle H, Sottile V, Di Domenico A, Fletcher J, Waterfall M, Corrales NL, Ansell R, McWhir J (2008) Human embryonic stem cells passaged using enzymatic methods retain a normal karyotype and express CD30. Cloning Stem Cells 10(1):89–106

    CAS  Google Scholar 

  102. Rubio D, Garcia S, Paz MF, De la Cueva T, Lopez-Fernandez LA, Lloyd AC, Garcia-Castro J, Bernad A (2008) Molecular characterization of spontaneous mesenchymal stem cell transformation. PLoS ONE 3(1):e1398

    Google Scholar 

  103. Watanabe K, Ueno M, Kamiya D, Nishiyama A, Matsumura M, Wataya T, Takahashi JB, Nishikawa S, Nishikawa S, Muguruma K, Sasai Y (2007) A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol 25(6):681–686

    CAS  Google Scholar 

  104. Fok EY, Zandstra PW (2005) Shear-controlled single-step mouse embryonic stem cell expansion and EB-based differentiation. Stem Cells 23(9):1333–42. Ebub 2005 Aug 4

    CAS  Google Scholar 

  105. zur Nieden NI, Cormier JT, Rancourt DE, Kallos MS (2007) Embryonic stem cells remain highly pluripotent following long term expansion as aggregates in suspension bioreactors. J Biotechnol 129(3):421–432

    CAS  Google Scholar 

  106. Terstegge S, Laufenberg I, Pochert J, Schenk S, Itskovitz-Eldor J, Endl E, Brustle O (2007) Automated maintenance of embryonic stem cell cultures. Biotechnol Bioeng 96(1):195–201

    CAS  Google Scholar 

  107. Horn PA, Tani K, Martin U, Niemann H (2006) Nonhuman primates: embryonic stem cells and transgenesis. Cloning Stem Cells 8(3):124–129

    CAS  Google Scholar 

  108. Cho MS, Lee YE, Kim JY, Chung S, Cho YH, Kim DS, Kang SM, Lee H, Kim MH, Kim JH, Leem JW, Oh SK, Choi YM, Hwang DY, Chang JW, Kim DW (2008) Highly efficient and large-scale generation of functional dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci U S A 105(9):3392–3397

    CAS  Google Scholar 

  109. Hay DC, Zhao D, Fletcher J, Hewitt ZA, McLean D, Urruticoechea-Uriguen A, Black JR, Elcombe C, Ross JA, Wolf R, Cui W (2008) Efficient differentiation of hepatocytes from human embryonic stem cells exhibiting markers recapitulating liver development in vivo. Stem Cells 26(4):894–902

    CAS  Google Scholar 

  110. Murry CE, Keller G (2008) Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132(4):661–680

    CAS  Google Scholar 

  111. Meyer T, Sartipy P, Blind F, Leisgen C, Guenther E (2007) New cell models and assays in cardiac safety profiling. Expert Opin Drug Metab Toxicol 3(4):507–517

    CAS  Google Scholar 

  112. Schwanke K, Wunderlich S, Reppel M, Winkler ME, Matzkies M, Groos S, Itskovitz-Eldor J, Simon AR, Hescheler J, Haverich A, Martin U (2006) Generation and characterization of functional cardiomyocytes from rhesus monkey embryonic stem cells. Stem Cells 24(6):1423–1432

    CAS  Google Scholar 

  113. Dang SM, Kyba M, Perlingeiro R, Daley GQ, Zandstra PW (2002) Efficiency of embryoid body formation and hematopoietic development from embryonic stem cells in different culture systems. Biotechnol Bioeng 78(4):442–453

    CAS  Google Scholar 

  114. Dang SM, Gerecht-Nir S, Chen J, Itskovitz-Eldor J, Zandstra PW (2004) Controlled, scalable embryonic stem cell differentiation culture. Stem Cells 22(3):275–282

    Google Scholar 

  115. Gerecht-Nir S, Cohen S, Itskovitz-Eldor J (2004) Bioreactor cultivation enhances the efficiency of human embryoid body (hEB) formation and differentiation. Biotechnol Bioeng 86(5):493–502

    CAS  Google Scholar 

  116. Gerecht-Nir S, Cohen S, Ziskind A, Itskovitz-Eldor J (2004) Three-dimensional porous alginate scaffolds provide a conducive environment for generation of well-vascularized embryoid bodies from human embryonic stem cells. Biotechnol Bioeng 88(3):313–320

    CAS  Google Scholar 

  117. Wobus AM, Wallukat G, Hescheler J (1991) Pluripotent mouse embryonic stem cells are able to differentiate into cardiomyocytes expressing chronotropic responses to adrenergic and cholinergic agents and Ca2+ channel blockers. Differentiation 48(3):173–182

    CAS  Google Scholar 

  118. Zweigerdt R, Burg M, Willbold E, Abts H, Ruediger M (2003) Generation of confluent cardiomyocyte monolayers derived from embryonic stem cells in suspension: a cell source for new therapies and screening strategies. Cytotherapy 5(5):399–413

    CAS  Google Scholar 

  119. Wartenberg M, Gunther J, Hescheler J, Sauer H (1998) The embryoid body as a novel in vitro assay system for antiangiogenic agents. Lab Invest 78(10):1301–1314

    CAS  Google Scholar 

  120. Zandstra PW, Bauwens C, Yin T et al (2003) Scalable production of embryonic stem cell-derived cardiomyocytes. Tissue Eng 9(4):767–778

    CAS  Google Scholar 

  121. Bauwens C, Yin T, Dang S, Peerani R, Zandstra PW (2005) Development of a perfusion fed bioreactor for embryonic stem cell-derived cardiomyocyte generation: oxygen-mediated enhancement of cardiomyocyte output. Biotechnol Bioeng 90(4):452-461

    CAS  Google Scholar 

  122. Niebruegge S, Nehring A, B¨ar H, Schroeder M, Zweigerdt R, Lehmann J Cardiomyocyte production in mass suspension culture: embryonic stem cells as a source for great amounts of functional cardiomyocytes. Tissue Eng Part A 14(10):1591–601

    Google Scholar 

  123. Viswanathan S, Benatar T, Mileikovsky M, Lauffenburger DA, Nagy A, Zandstra PW (2003) Supplementation-dependent differences in the rates of embryonic stem cell self-renewal, differentiation and apoptosis. Biotechnol Bioeng 84(5):505

    CAS  Google Scholar 

  124. Graichen R, Xu XQ, Braam SR, Balakrishnan T, Norfiza S, Sieh S, Soo SY, Tham SC, Mummery CL, Colman A, Zweigerdt R, Davidson BP (2008) Enhanced cardiomyogenesis of human embryonic stem cells by a small molecular inhibitor of p38 MAPK. Differentiation 76:357–370

    CAS  Google Scholar 

  125. Xu XQ, Graichen R, Soo SY, Balakrishnan T, Norfiza S, Sieh S, Tham SC, Freund C, Moore J, Mummery C, Colman A, Zweigerdt R, Davidson BP (2008) Chemically defined medium supporting differentiation of human embryonic stem cells to cardiomyocytes. Differentiation [Epub ahead of print]

    Google Scholar 

  126. Freund C, Ward-van Oostwaard D, Monshouwer-Kloots J, van den Brink S, van Rooijen M, Xu X, Zweigerdt R, Mummery C, Passier R (2008) Insulin redirects differentiation from cardiogenic mesoderm and endoderm to neuroectoderm in differentiating human embryonic stem cells. Stem Cells 26(3):724–733

    CAS  Google Scholar 

  127. Ng ES, Davis RP, Azzola L, Stanley EG, Elefanty AG (2005) Forced aggregation of defined numbers of human embryonic stem cells into embryoid bodies fosters robust, reproducible hematopoietic differentiation. Blood 106(5):1601–1603

    CAS  Google Scholar 

  128. Costa M, Dottori M, Ng E, Hawes SM, Sourris K, Jamshidi P, Pera MF, Elefanty AG, Stanley EG (2005) The hESC line Envy expresses high levels of GFP in all differentiated progeny. Nat Methods 2(4):259–260

    CAS  Google Scholar 

  129. Burridge PW, Anderson D, Priddle H, Barbadillo Munoz MD, Chamberlain S, Allegrucci C, Young LE, Denning C (2007) Improved human embryonic stem cell embryoid body homogeneity and cardiomyocyte differentiation from a novel V-96 plate aggregation system highlights interline variability. Stem Cells 25(4):929–938

    CAS  Google Scholar 

  130. Cameron CM, Hu WS, Kaufman DS (2006) Improved development of human embryonic stem cell-derived embryoid bodies by stirred vessel cultivation. Biotechnol Bioeng 94:938–948

    CAS  Google Scholar 

  131. Ungrin MD, Joshi C, Nica A, Bauwens C, Zandstra PW (2008) Reproducible, ultra high-throughput formation of multicellular organization from single cell suspension-derived human embryonic stem cell aggregates. PLoS One 3(2):e1565

    Google Scholar 

  132. Hentze H, Graichen R, Colman A (2007) Cell therapy and the safety of embryonic stem cell-derived grafts. Trends Biotechnol 25(1):24–32

    CAS  Google Scholar 

  133. Hirata H, Murakami Y, Miyamoto Y, Tosaka M, Inoue K, Nagahashi A, Jakt LM, Asahara T, Iwata H, Sawa Y, Kawamata S (2006) ALCAM (CD166) is a surface marker for early murine cardiomyocytes. Cells Tissues Organ 184(3–4):172–180

    CAS  Google Scholar 

  134. Rust WL, Balakrishnan T, Zweigerdt R Cardiomyocyte enrichment from human embryonic stem cell cultures by selection of cells with surface expression of CD166. Regenerative Medicine, in press

    Google Scholar 

  135. Choo AB, Tan HL, Ang SN, Fong WJ, Chin A, Lo J, Zheng L, Hentze H, Philp RJ, Oh SK, Yap M (2008) Selection against undifferentiated human embryonic stem cells by a cytotoxic antibody recognizing podocalyxin-like protein-1. Stem Cells 26(6):1454–1463

    CAS  Google Scholar 

  136. Xu C, Police S, Rao N, Carpenter MK (2002) Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ Res 91(6):501–508

    CAS  Google Scholar 

  137. Klug MG, Soonpaa MH, Koh GY, Field LJ (1996) Genetically selected cardiomyocytes from differentiating embronic stem cells form stable intracardiac grafts. J Clin Invest 98(1):216–224

    CAS  Google Scholar 

  138. Li M, Pevny L, Lovell-Badge R, Smith A (1998) Generation of purified neural precursors from embryonic stem cells by lineage selection. Curr Biol 8(17):971–974

    CAS  Google Scholar 

  139. Soria B, Roche E, Berna G, Leon-Quinto T, Reig JA, Martin F (2000) Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes 49(2):157–162

    CAS  Google Scholar 

  140. Muller M, Fleischmann BK, Selbert S, Ji GJ, Endl E, Middeler G, Muller OJ, Schlenke P, Frese S, Wobus AM, Hescheler J, Katus HA, Franz WM (2000) Selection of ventricular-like cardiomyocytes from ES cells in vitro. FASEB J 14(15):2540–2548

    CAS  Google Scholar 

  141. Huber I, Itzhaki I, Caspi O, Arbel G, Tzukerman M, Gepstein A, Habib M, Yankelson L, Kehat I, Gepstein L (2007) Identification and selection of cardiomyocytes during human embryonic stem cell differentiation. FASEB J 21:2551–2563

    CAS  Google Scholar 

  142. Xu XQ, Zweigerdt R, Soo SY, Ngoh ZX, Tham SC,Wang ST et al. Highly enriched cardiomyocytes from human embryonic stem cells. Cytotherapy 10(4):376–89

    Google Scholar 

  143. Lawrenz B, Schiller H, Willbold E, Ruediger M, Muhs A, Esser S (2004) Highly sensitive biosafety model for stem-cell-derived grafts. Cytotherapy 6(3):212–222

    CAS  Google Scholar 

  144. Soong PL, Wang ST, Putti TC, Phillips B, Dunn RD, Hentze H Transplantation into SCID mice: relevance of transplantation site, cell number, and cell dissociation, submitted for publication

    Google Scholar 

  145. Field LJ (2004) Modulation of the cardiomyocyte cell cycle in genetically altered animals. Ann N Y Acad Sci 1015:160–170

    CAS  Google Scholar 

  146. Dai W, Field LJ, Rubart M, Reuter S, Hale SL, Zweigerdt R, Graichen RE, Kay GL, Jyrala AJ, Colman A, Davidson BP, Pera M, Kloner RA (2007) Survival and maturation of human embryonic stem cell-derived cardiomyocytes in rat hearts. J Mol Cell Cardiol 43(4):504–516

    CAS  Google Scholar 

  147. Storch A, Sabolek M, Milosevic J, Schwarz SC, Schwarz J (2004) Midbrain-derived neural stem cells: from basic science to therapeutic approaches. Cell Tissue Res 318(1):15–22

    Google Scholar 

  148. Storch A, Paul G, Csete M, Boehm BO, Carvey PM, Kupsch A, Schwarz J (2001) Long-term proliferation and dopaminergic differentiation of human mesencephalic neural precursor cells. Exp Neurol 170(2):317–325

    CAS  Google Scholar 

  149. Hall VJ, Li JY, Brundin P (2007) Restorative cell therapy for Parkinson’s disease: a quest for the perfect cell. Semin Cell Dev Biol 18(6):859–869

    CAS  Google Scholar 

  150. Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710

    CAS  Google Scholar 

  151. Stemple DL, Anderson DJ (1992) Isolation of a stem cell for neurons and glia from the mammalian neural crest. Cell 71(6):973–985

    CAS  Google Scholar 

  152. Kallos MS, Behie LA (1999) Inoculation and growth conditions for high-cell-density expansion of mammalian neural stem cells in suspension bioreactors. Biotechnol Bioeng 63(4):473–483

    CAS  Google Scholar 

  153. Kallos MS, Behie LA, Vescovi AL (1999) Extended serial passaging of mammalian neural stem cells in suspension bioreactors. Biotechnol Bioeng 65(5):589–599

    CAS  Google Scholar 

  154. Gilbertson JA, Sen A, Behie LA, Kallos MS (2006) Scaled-up production of mammalian neural precursor cell aggregates in computer-controlled suspension bioreactors. Biotechnol Bioeng 94(4):783–792

    CAS  Google Scholar 

  155. Mukhida K, Baghbaderani BA, Hong M, Lewington M, Phillips T, McLeod M, Sen A, Behie LA, Mendez I (2008) Survival, differentiation, and migration of bioreactor-expanded human neural precursor cells in a model of Parkinson disease in rats. Neurosurg Focus 24(3–4):E8

    Google Scholar 

  156. McLeod MC, Kobayashi NR, Sen A, Baghbaderani BA, Sadi D, Ulalia R, Behie LA, Mendez I Behavioral restoration following transplantation of bioreactor-expanded neural precursor cells in a rodent model of Huntington’s disease. Submitted

    Google Scholar 

  157. Lian Q, Lye E, Suan Yeo K, Khia Way Tan E, Salto-Tellez M, Liu TM, Palanisamy N, El Oakley RM, Lee EH, Lim B, Lim SK (2007) Derivation of clinically compliant MSCs from CD105+, CD24- differentiated human ESCs. Stem Cells 25(2):425–436

    CAS  Google Scholar 

  158. Owen M, Friedenstein AJ (1988) Stromal stem cells: marrow-derived osteogenic precursors. CIBA Found Symp 136:42–60

    CAS  Google Scholar 

  159. Brooke G, Cook M, Blair C, Han R, Heazlewood C, Jones B, Kambouris M, Kollar K, McTaggart S, Pelekanos R, Rice A, Rossetti T, Atkinson K (2007) Therapeutic applications of mesenchymal stromal cells. Semin Cell Dev Biol 18(6):846–858

    CAS  Google Scholar 

  160. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147

    CAS  Google Scholar 

  161. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop Dj, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317

    CAS  Google Scholar 

  162. Le Blanc K, Ringdén O (2007) Immunomodulation by mesenchymal stem cells and clinical experience. J Intern Med 262(5):509–525

    CAS  Google Scholar 

  163. Ren G, Zhang L, Zhao X, Xu G, Zhang Y, Roberts AI, Zhao RC, Shi Y (2008) Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell 2(2):141–150

    CAS  Google Scholar 

  164. Timmers L, Lim SK, Arslan F, Armstrong JS, Hoefer IE, Doevendans PA, Piek JJ, Oakley RME, Andre Choo A, Lee CN, MBBS, Pasterkamp G, de Kleijn DPV (2008) Reduction of myocardial infarct size by human mesenchymal stem cell conditioned medium. Stem Cell Res 1:129–137

    Google Scholar 

  165. Zhao F, Chella R, Ma T (2007) Effects of shear stress on 3-D human mesenchymal stem cell construct development in a perfusion bioreactor system: experiments and hydrodynamic modeling. Biotechnol Bioeng 96(3):584–595

    CAS  Google Scholar 

  166. Zhao F, Pathi P, Grayson W, Xing Q, Locke BR, Ma T (2005) Effects of oxygen transport on 3D human mesenchymal stem cell metabolic activity in perfusion and static cultures: experiments and mathematical model. Biotechnol Prog 21(4):1269–1280

    CAS  Google Scholar 

  167. Chen X, Xu H, Wan C, McCaigue M, Li G (2006) Bioreactor expansion of human adult bone marrow-derived mesenchymal stem cells. Stem Cells 24(9):2052–2059

    CAS  Google Scholar 

  168. Wang TW, Wu HC, Wang HY, Lin FH, Sun JS (2008) Regulation of adult human mesenchymal stem cells into osteogenic and chondrogenic lineages by different bioreactor systems. J Biomed Mater Res A Apr 2. [Epub ahead of print]

    Google Scholar 

Download references

Acknowledgements

I thank Blaine Phillips, William Rust, Birgit Andree, Harmeet Singh, Zhou WeiZhuang (Institute of Medical Biology, Singapore) and Andre Choo (Bioprocessing Technology Institute, Singapore) for helpful comments and a critical review of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Zweigerdt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zweigerdt, R. (2009). Large Scale Production of Stem Cells and Their Derivatives. In: Martin, U. (eds) Engineering of Stem Cells. Advances in Biochemical Engineering / Biotechnology, vol 114. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2008_27

Download citation

Publish with us

Policies and ethics