Skip to main content

Bioreactors for Tissue Engineering of Cartilage

  • Chapter
Bioreactor Systems for Tissue Engineering

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 112))

The cartilage regenerative medicine field has evolved during the last decades. The first-generation technology, autologous chondrocyte transplantation (ACT) involved the transplantation of in vitro expanded chondrocytes to cartilage defects. The second generation involves the seeding of chondrocytes in a three-dimensional scaffold. The technique has several potential advantages such as the ability of arthroscopic implantation, in vitro pre-differentiation of cells and implant stability among others (Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L, N Engl J Med 331(14):889–895, 1994; Henderson I, Francisco R, Oakes B, Cameron J, Knee 12(3):209–216, 2005; Peterson L, Minas T, Brittberg M, Nilsson A, Sjogren-Jansson E, Lindahl A, Clin Orthop (374):212–234, 2000; Nagel-Heyer S, Goepfert C, Feyerabend F, Petersen JP, Adamietz P, Meenen NM, et al. Bioprocess Biosyst Eng 27(4):273–280, 2005; Portner R, Nagel-Heyer S, Goepfert C, Adamietz P, Meenen NM, J Biosci Bioeng 100(3):235–245, 2005; Nagel-Heyer S, Goepfert C, Adamietz P, Meenen NM, Portner R, J Biotechnol 121(4):486–497, 2006; Heyland J, Wiegandt K, Goepfert C, Nagel-Heyer S, Ilinich E, Schumacher U, et al. Biotechnol Lett 28(20):1641–1648, 2006). The nutritional requirements of cells that are synthesizing extra-cellular matrix increase along the differentiation process. The mass transfer must be increased according to the tissue properties. Bioreactors represent an attractive tool to accelerate the biochemical and mechanical properties of the engineered tissues providing adequate mass transfer and physical stimuli. Different reactor systems have been [5] developed during the last decades based on different physical stimulation concepts. Static and dynamic compression, confined and nonconfined compression-based reactors have been described in this review. Perfusion systems represent an attractive way of culturing constructs under dynamic conditions. Several groups showed increased matrix production using confined and unconfined systems. Development of automatic culture systems and noninvasive monitoring of matrix production will take place during the next few years in order to improve the cost affectivity of tissue-engineered products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331(14):889–895

    Article  CAS  PubMed  Google Scholar 

  2. Henderson I, Francisco R, Oakes B, Cameron J (2005) Autologous chondrocyte implantation for treatment of focal chondral defects of the knee—a clinical, arthroscopic, MRI and histo-logic evaluation at 2 years. Knee 12(3):209–216

    Article  PubMed  Google Scholar 

  3. Peterson L, Minas T, Brittberg M, Nilsson A, Sjogren-Jansson E, Lindahl A (2000) Two- to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin Orthop (374):212–234

    Article  Google Scholar 

  4. Nagel-Heyer S, Goepfert C, Feyerabend F, Petersen JP, Adamietz P, Meenen NM, et al. (2005) Bioreactor cultivation of three-dimensional cartilage-carrier-constructs. Bioprocess Biosyst Eng 27(4):273–280

    Article  CAS  PubMed  Google Scholar 

  5. Portner R, Nagel-Heyer S, Goepfert C, Adamietz P, Meenen NM (2005) Bioreactor design for tissue engineering. J Biosci Bioeng 100(3):235–245

    Article  CAS  PubMed  Google Scholar 

  6. Nagel-Heyer S, Goepfert C, Adamietz P, Meenen NM, Portner R (2006) Cultivation of three-dimensional cartilage-carrier-constructs under reduced oxygen tension. J Biotechnol 121(4):486–497

    Article  CAS  PubMed  Google Scholar 

  7. Heyland J, Wiegandt K, Goepfert C, Nagel-Heyer S, Ilinich E, Schumacher U, et al. (2006) Redifferentiation of chondrocytes and cartilage formation under intermittent hydrostatic pressure. Biotechnol Lett 28(20):1641–1648

    Article  CAS  PubMed  Google Scholar 

  8. Nagel-Heyer S, Goepfert C, Morlock MM, Portner R (2005) Relationship between physical, biochemical and biomechanical properties of tissue-engineered cartilage-carrier-constructs. Biotechnol Lett 27(3):187–192

    Article  CAS  Google Scholar 

  9. Marlovits S, Kutscha-Lissberg F, Aldrian S, Resinger C, Singer P, Zeller P, et al. (2004) [Autologous chondrocyte transplantation for the treatment of articular cartilage defects in the knee joint. Techniques and results]. Radiologe 44(8):763–772

    Article  CAS  PubMed  Google Scholar 

  10. Marlovits S, Tichy B, Truppe M, Gruber D, Schlegel W (2003) Collagen expression in tissue engineered cartilage of aged human articular chondrocytes in a rotating bioreactor. Int J Artif Organs 26(4):319–330

    Article  CAS  PubMed  Google Scholar 

  11. Marlovits S, Striessnig G, Kutscha-Lissberg F, Resinger C, Aldrian SM, Vecsei V, et al. (2004) Early postoperative adherence of matrix-induced autologous chondrocyte implantation for the treatment of full-thickness cartilage defects of the femoral condyle. Knee Surg Sports Traumatol Arthrosc 13(6):451–457

    Article  PubMed  Google Scholar 

  12. Nehrer S, Domayer S, Dorotka R, Schatz K, Bindreiter U, Kotz R (2006) Three-year clinical outcome after chondrocyte transplantation using a hyaluronan matrix for cartilage repair. Eur J Radiol 57(1):3–8

    Article  CAS  PubMed  Google Scholar 

  13. Marcacci M, Zaffagnini S, Kon E, Visani A, Iacono F, Loreti I (2002) Arthroscopic autolo-gous chondrocyte transplantation: technical note. Knee Surg Sports Traumatol Arthrosc 10(3):154–159

    Article  CAS  PubMed  Google Scholar 

  14. Marcacci M, Berruto M, Brocchetta D, Delcogliano A, Ghinelli D, Gobbi A, et al. (2005) Cartilage engineering with Hyalograft C: 3-year clinical results. Clin Orthop Relat Res (435):96–105

    Article  Google Scholar 

  15. Pavesio A, Abatangelo G, Borrione A, Brocchetta D, Hollander AP, Kon E, et al. (2003) Hyaluronan-based scaffolds (Hyalograft C) in the treatment of knee cartilage defects: preliminary clinical findings. Novartis Found Symp 249:203–217; discussion 229–233, 234–208, 239–241

    PubMed  Google Scholar 

  16. Poole AR, Kojima T, Yasuda T, Mwale F, Kobayashi M, Laverty S (2001) Composition and structure of articular cartilage: a template for tissue repair. Clin Orthop (391 Suppl):S26–S33

    Article  Google Scholar 

  17. Mow V (2006) Functional tissue engineering. Conf Proc IEEE Eng Med Biol Soc 1:16–17

    Google Scholar 

  18. Mow VC, Ateshian GA, Spilker RL (1993) Biomechanics of diarthrodial joints: a review of twenty years of progress. J Biomech Eng 115(4B):460–467

    Article  CAS  PubMed  Google Scholar 

  19. Mow VC, Gibbs MC, Lai WM, Zhu WB, Athanasiou KA (1989) Biphasic indentation of articular cartilage — II. A numerical algorithm and an experimental study. J Biomech 22(8–9):853–861

    Article  CAS  PubMed  Google Scholar 

  20. Mow VC, Guo XE (2002) Mechano-electrochemical properties of articular cartilage: their inhomogeneities and anisotropies. Annu Rev Biomed Eng 4:175–209

    Article  CAS  PubMed  Google Scholar 

  21. Mow VC, Wang CC (1999) Some bioengineering considerations for tissue engineering of articular cartilage. Clin Orthop Relat Res (367 Suppl):S204–S223

    Article  Google Scholar 

  22. Mow VC, Wang CC, Hung CT (1999) The extracellular matrix, interstitial fluid and ions as a mechanical signal transducer in articular cartilage. Osteoarthritis Cartilage 7(1):41–58

    Article  CAS  PubMed  Google Scholar 

  23. Mak AF, Lai WM, Mow VC (1987) Biphasic indentation of articular cartilage — I. Theoretical analysis. J Biomech 20(7):703–714

    Article  CAS  PubMed  Google Scholar 

  24. Shieh AC, Athanasiou KA (2006) Biomechanics of single zonal chondrocytes. J Biomech 39(9):1595–1602

    Article  PubMed  Google Scholar 

  25. Leipzig ND, Athanasiou KA (2005) Unconfined creep compression of chondrocytes. J Biomech 38(1):77–85

    Article  PubMed  Google Scholar 

  26. Shieh AC, Athanasiou KA (2003) Principles of cell mechanics for cartilage tissue engineering. Ann Biomed Eng 31(1):1–11

    Article  PubMed  Google Scholar 

  27. Shieh AC, Athanasiou KA (2002) Biomechanics of single chondrocytes and osteoarthritis. Crit Rev Biomed Eng 30(4–6):307–343

    PubMed  Google Scholar 

  28. Marsano A, Wendt D, Raiteri R, Gottardi R, Stolz M, Wirz D, et al. (2006) Use of hydrody-namic forces to engineer cartilaginous tissues resembling the non-uniform structure and function of meniscus. Biomaterials 27(35):5927–5934

    Article  CAS  PubMed  Google Scholar 

  29. Wendt D, Marsano A, Jakob M, Heberer M, Martin I (2003) Oscillating perfusion of cell suspensions through three-dimensional scaffolds enhances cell seeding efficiency and uniformity. Biotechnol Bioeng 84(2):205–214

    Article  CAS  PubMed  Google Scholar 

  30. Bancroft GN, Sikavitsas VI, Mikos AG (2003) Design of a flow perfusion bioreactor system for bone tissue-engineering applications. Tissue Eng 9(3):549–554

    Article  CAS  PubMed  Google Scholar 

  31. Darling EM, Athanasiou KA (2003) Articular cartilage bioreactors and bioprocesses. Tissue Eng 9(1):9–26

    Article  CAS  PubMed  Google Scholar 

  32. Freed LE, Hollander AP, Martin I, Barry JR, Langer R, Vunjak-Novakovic G (1998) Chondrogenesis in a cell-polymer-bioreactor system. Exp Cell Res 240(1):58–65

    Article  CAS  PubMed  Google Scholar 

  33. LeBaron RG, Athanasiou KA (2000) Ex vivo synthesis of articular cartilage. Biomaterials 21(24):2575–2587

    Article  CAS  PubMed  Google Scholar 

  34. Mahmoudifar N, Doran PM (2005) Tissue engineering of human cartilage and osteochondral composites using recirculation bioreactors. Biomaterials 26(34):7012–7024

    Article  CAS  PubMed  Google Scholar 

  35. Tognana E, Chen F, Padera RF, Leddy HA, Christensen SE, Guilak F, et al. (2005) Adjacent tissues (cartilage, bone) affect the functional integration of engineered calf cartilage in vitro. Osteoarthritis Cartilage 13(2):129–138

    Article  CAS  PubMed  Google Scholar 

  36. Vunjak-Novakovic G, Freed LE (1998) Culture of organized cell communities. Adv Drug Deliv Rev 33(1–2):15–30

    CAS  PubMed  Google Scholar 

  37. Freyria AM, Cortial D, Ronziere MC, Guerret S, Herbage D (2004) Influence of medium composition, static and stirred conditions on the proliferation of and matrix protein expression of bovine articular chondrocytes cultured in a 3-D collagen scaffold. Biomaterials 25(4):687–697

    Article  CAS  PubMed  Google Scholar 

  38. Pei M, Solchaga LA, Seidel J, Zeng L, Vunjak-Novakovic G, Caplan AI, et al. (2002) Bioreactors mediate the effectiveness of tissue engineering scaffolds. FASEB J 16(12):1691–1694

    Article  CAS  PubMed  Google Scholar 

  39. Vunjak-Novakovic G, Obradovic B, Martin I, Bursac PM, Langer R, Freed LE, et al. (1998) Dynamic cell seeding of polymer scaffolds for cartilage tissue engineering chondrogenesis in a cell-polymer-bioreactor system. Biotechnol Prog 14(2):193–202

    Article  CAS  PubMed  Google Scholar 

  40. Freyria AM, Yang Y, Chajra H, Rousseau CF, Ronziere MC, Herbage D, et al. (2005) Optimization of dynamic culture conditions: effects on biosynthetic activities of chondrocytes grown in collagen sponges. Tissue Eng 11(5–6):674–684

    Article  CAS  PubMed  Google Scholar 

  41. Bancroft GN, Sikavitsas VI, van den Dolder J, Sheffield TL, Ambrose CG, Jansen JA, et al. (2002) Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner. Proc Natl Acad Sci U S A 99(20):12600–12605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Minuth WW, Strehl R, Schumacher K, de Vries U (2001) Long term culture of epithelia in a continuous fluid gradient for biomaterial testing and tissue engineering. J Biomater Sci Polym Ed 12(3):353–365

    Article  CAS  PubMed  Google Scholar 

  43. Strehl R, Tallheden T, Sjogren-Jansson E, Minuth WW, Lindahl A (2005) Long-term maintenance of human articular cartilage in culture for biomaterial testing. Biomaterials 26(22):4540–4549

    Article  CAS  PubMed  Google Scholar 

  44. Zhao F, Ma T (2005) Perfusion bioreactor system for human mesenchymal stem cell tissue engineering: dynamic cell seeding and construct development. Biotechnol Bioeng 91(4):482–493

    Article  CAS  PubMed  Google Scholar 

  45. Minuth WW, Strehl R, Schumacher K (2004) Tissue factory: conceptual design of a modular system for the in vitro generation of functional tissues. Tissue Eng 10(1–2):285–294

    Article  CAS  PubMed  Google Scholar 

  46. Minuth WW, Schumacher K, Strehl R, Kloth S (2000) Physiological and cell biological aspects of perfusion culture technique employed to generate differentiated tissues for long term biomaterial testing and tissue engineering. J Biomater Sci Polym Ed 11(5):495–522

    Article  CAS  PubMed  Google Scholar 

  47. Davisson T, Sah RL, Ratcliffe A (2002) Perfusion increases cell content and matrix synthesis in chondrocyte three-dimensional cultures. Tissue Eng 8(5):807–816

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Concaro, S., Gustavson, F., Gatenholm, P. (2009). Bioreactors for Tissue Engineering of Cartilage. In: Kasper, C., van Griensven, M., Pörtner, R. (eds) Bioreactor Systems for Tissue Engineering. Advances in Biochemical Engineering/Biotechnology, vol 112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2008_10

Download citation

Publish with us

Policies and ethics