Skip to main content
  • 636 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bax JJ, Valkema R, Visser FC, et al. FDG SPECT in the assessment of myocardial viability. Comparison with dobutamine echo. Eur Heart J 1997;18(suppl D): D124–129.

    PubMed  Google Scholar 

  2. Nowak B, Zimny M, Schwarz ER, et al. Diagnosis of myocardial viability by dual-head coincidence gamma camera fluorine-18 fluorodeoxyglucose positron emission tomography with and without non-uniform attenuation correction. Eur J Nucl Med 2000;27:1501–1508.

    Article  PubMed  CAS  Google Scholar 

  3. Bax J, Patton J, Poldermans D, Elhendy A, Sandler M. 18-Fluorodeoxyglucose imaging with positron emission tomography and single photon emission computed tomography: cardiac applications. Semin Nucl Med 2000;30:281–298.

    Article  PubMed  CAS  Google Scholar 

  4. Bergmann SR, Herrero P, Markham J, Weinheimer CJ, Walsh MN. Non-invasive quantitation of myocardial blood flow in human subjects with oxygen-15 labeled water and positron emission tomography. J Am Coll Cardiol 1989;14:639–652.

    PubMed  CAS  Google Scholar 

  5. Hutchins G, Schwaiger M, Rosenspire K, Krivokapich J, Schelbert H, Kuhl D. Noninvasive quantification of regional myocardial blood flow in the human heart using N-13 ammonia and dynamic positron emission tomographic imaging. J Am Coll Cardiol 1990;15:1032.

    PubMed  CAS  Google Scholar 

  6. Gambhir SS, Schwaiger M, Huang SC, et al. Simple noninvasive quantification method for measuring myocardial glucose utilization in humans employing positron emission tomography and fluorine-18 deoxyglucose. J Nucl Med 1989;30:359–366.

    PubMed  CAS  Google Scholar 

  7. Bacharach SL, Bax JJ, Case J, et al. PET myocardial glucose metabolism and perfusion imaging. Part 1. Guidelines for data acquisition and patient preparation. J Nucl Cardiol 2003;10:543–556.

    Article  PubMed  Google Scholar 

  8. Schelbert HR, Beanlands R, Bengel F, et al. PET myocardial perfusion and glucose metabolism imaging. Part 2. Guidelines for interpretation and reporting. J Nucl Cardiol 2003;10:557–571.

    Article  PubMed  Google Scholar 

  9. Gould K, Goldstein R, Mullani N, et al. Clinical feasibility, sensitivity and specifically of positron cardiac imaging without a cyclotron using generator produced Rb-82 for the diagnosis of coronary artery disease. J Nucl Med 1986;27:976.

    Google Scholar 

  10. Schelbert HR, Wisenberg G, Phelps ME, et al. Noninvasive assessment of coronary stenoses by myocardial imaging during pharmacologic coronary vasodilation. VI. Detection of coronary artery disease in man with intravenous 13-NH3 and positron computed tomography. Am J Cardiol 1982;49:1197–1207.

    Article  PubMed  CAS  Google Scholar 

  11. Tamaki N, Yonekura Y, Senda M, et al. Myocardial positron computed tomography with 13N-ammonia at rest and during exercise. Eur J Nucl Med 1985;11: 246–251.

    Article  PubMed  CAS  Google Scholar 

  12. Schwaiger M, Melin J. Cardiological applications of nuclear medicine. Lancet 1999;354:661–666.

    Article  PubMed  CAS  Google Scholar 

  13. Marwick T, Shan K, Patel S, Go R, Lauer M. Incremental value of rubidium-82 positron emission tomography for prognostic assessment of known or suspected coronary artery disease. Am J Cardiol 1997;80:865–870.

    Article  PubMed  CAS  Google Scholar 

  14. Patterson RE, Eisner RL, Horowitz SF. Comparison of cost-effectiveness and utility of exercise ECG, single photon emission computed tomography, positron emission tomography, and coronary angiography for diagnosis of coronary artery disease. Circulation 1995; 91:54–65.

    PubMed  CAS  Google Scholar 

  15. Muzik O, Duvernoy C, Beanlands R, et al. Assessment of diagnostic performance of quantitative flow measurements in normal subjects and patients with angiographically documented CAD by means of nitrogen-13 ammonia and using PET. J Am Coll Cardiol 1998;31: 534–540.

    Article  PubMed  CAS  Google Scholar 

  16. Czernin J, Barnard RJ, Sun KT, et al. Effect of short-term cardiovascular conditioning and low-fat diet on myocardial blood flow and flow reserve. Circulation 1995;92:197–204.

    PubMed  CAS  Google Scholar 

  17. Dayanikli F, Grambow D, Muzik O, Mosca L, Rubenfire M, Schwaiger M. Early detection of abnormal coronary flow reserve in asymptomatic men at high risk for coronary artery disease using positron emission tomography. Circulation 1994;90:808–817.

    PubMed  CAS  Google Scholar 

  18. DiCarli M, Czernin J, Hoh CK, et al. Relation among stenosis severity, myocardial blood flow, and flow reserve in patients with coronary artery disease. Circulation 1995;91:1944–1951.

    CAS  Google Scholar 

  19. Pitkanen O, Raitakari O, Niinikoski H, et al. Coronary flow reserve is impaired in young men with familial hypercholesterolemia. J Am Coll Cardiol 1996;28: 1705–1711.

    Article  PubMed  CAS  Google Scholar 

  20. Pitkanen O, Nuutila P, Raitakari O, et al. Coronary flow reserve is reduced in young men with IDDM. Diabetes 1998;47:248–254.

    PubMed  CAS  Google Scholar 

  21. Momose M, Abletshauser C, Neverve J, et al. Dysregulation of coronary microvascular reactivity in asymptomatic patients with type 2 diabetes mellitus. Eur J Nucl Med 2002;29:1675–1679.

    Article  Google Scholar 

  22. Tillisch J, Brunken R, Marshall R, et al. Reversibility of cardiac wall motion abnormalities predicted by positron tomography. N Engl J Med 1986;314:884–888.

    Article  PubMed  CAS  Google Scholar 

  23. Bax JJ, Wijns W, Cornel JH, Visser FC, Boersma E, Fioretti PM. Accuracy of currently available techniques for prediction of functional recovery after revascularization in patients with left ventricular dysfunction due to chronic coronary artery disease: comparison of pooled data. J Am Coll Cardiol 1997;30:1451–1460.

    Article  PubMed  CAS  Google Scholar 

  24. DiCarli MF, Asgarzadie F, Schelbert HR, et al. Quantitative relation between myocardial viability and improvement in heart failure symptoms after revascularization in patients with ischemic cardiomyopathy. Circulation 1995;92:3436–3444.

    CAS  Google Scholar 

  25. Haas F, Haehnel CJ, Picker W, et al. Preoperative positron emission tomographic viability assessment and perioperative and postoperative risk in patients with advanced ischemic heart disease. J Am Coll Cardiol 1997;30:1693–1700.

    Article  PubMed  CAS  Google Scholar 

  26. Beanlands R, Hendry P, Masters R, deKemp R, Woodend K, Ruddy T. Delay in revascularization is associated with increased mortality rate in patients with severe left ventricular dysfunction and viable myocardium on fluorine 18-fluorodeoxyglucose positron emission tomography imaging. Circulation 1998;98(19 suppl): II51–56.

    PubMed  CAS  Google Scholar 

  27. Beanlands RS, deKemp RA, Smith S, Johansen H, Ruddy TD. F-18-fluorodeoxyglucose PET imaging alters cliniiscal decision making in patients with impaired ventricular function. Am J Cardiol 1997;79:1092–1095.

    Article  PubMed  CAS  Google Scholar 

  28. Krivokapich J, Huang SC, Selin CE, Phelps ME. Fluorodeoxyglucose rate constants, lumped constant, and glucose metabolic rate in rabbit heart. Am J Physiol 1987;252:H777–787.

    PubMed  CAS  Google Scholar 

  29. Knuuti MJ, Nuutila P, Ruotsalainen U, et al. Euglycemic hyperinsulinemic clamp and oral glucose load in stimulating myocardial glucose utilization during positron emission tomography. J Nucl Med 1992;33:1255–1262.

    PubMed  CAS  Google Scholar 

  30. Knuuti MJ, Yki-Jarvinen H, Voipio-Pulkki LM, et al. Enhancement of myocardial [fluorine-18]fluorodeoxyglucose uptake by a nicotinic acid derivative. J Nucl Med 1994;35:989–998.

    PubMed  CAS  Google Scholar 

  31. Neely JR, Morgan HE. Relationship between carbohydrate and lipid metabolism and the energy balance of the heart muscle. Ann Rev Physiol 1974;36:412–459.

    Article  Google Scholar 

  32. Knuuti J, Schelbert HR, Bax JJ. The need for standardisation of cardiac FDG PET imaging in the evaluation of myocardial viability in patients with chronic ischaemic left ventricular dysfunction. Eur J Nucl Med Mol Imaging 2002;29:1257–1266.

    Article  PubMed  Google Scholar 

  33. Berry JJ, Baker JA, Pieper KS, Hanson MW, Hoffman JM, Coleman RE. The effect of metabolic milieu on cardiac PET imaging using fluorine-18-deoxyglucose and nitrogen-13-ammonia in normal volunteers. J Nucl Med 1991;32:1518–1525.

    PubMed  CAS  Google Scholar 

  34. DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol 1979;237:E214–223.

    PubMed  CAS  Google Scholar 

  35. Schinkel AF, Bax JJ, Valkema R, et al. Effect of diabetes mellitus on myocardial 18F-FDG SPECT using acipimox for the assessment of myocardial viability. J Nucl Med 2003;44:877–883.

    PubMed  Google Scholar 

  36. Schroder O, Hor G, Hertel A, Baum RP. Combined hyperinsulinaemic glucose clamp and oral acipimox for optimizing metabolic conditions during 18F-fluorodeoxyglucose gated PET cardiac imaging: comparative results. Nucl Med Commun 1998;19:867–874.

    Article  PubMed  CAS  Google Scholar 

  37. Stone CK, Holden JE, Stanley W, Perlman SB. Effect of nicotinic acid on exogenous myocardial glucose utilization. J Nucl Med 1995;36:996–1002.

    PubMed  CAS  Google Scholar 

  38. Musatti L, Maggi E, Moro E, Valzelli G, Tamassia V. Bioavailability and pharmacokinetics in man of acipimox, a new antilipolytic and hypolipemic agent. J Int Med Res 1981;9:381–386.

    PubMed  CAS  Google Scholar 

  39. Herrero P, Weinheimer CJ, Dence C, Oellerich WF, Gropler RJ. Quantification of myocardial glucose utilization by PET and 1-carbon-11-glucose. J Nucl Cardiol 2002;9:5–14.

    Article  PubMed  Google Scholar 

  40. Schön HR, Schelbert HR, Robinson G, et al. C-11 labeled palmitic acid for the noninvasive evaluation of regional myocardial fatty acid metabolism with positron emission tomography. I. Kinetics of C-11 palmitic acid in normal myocardium. Am Heart J 1981;103:532–547.

    Article  Google Scholar 

  41. Maki MT, Haaparanta M, Nuutila P, et al. Free fatty acid uptake in the myocardium and skeletal muscle using fluorine-18-fluoro-6-thia-heptadecanoic acid. J Nucl Med 1998;39:1320–1327.

    PubMed  CAS  Google Scholar 

  42. Brown M, Marshall DR, Sobel BE, Bergmann SR. Delineation of myocardial oxygen utilization with carbon-11-labeled acetate. Circulation 1987;76:687–696.

    PubMed  CAS  Google Scholar 

  43. Buxton DB, Schwaiger M, Nguyen A, Phelps ME, Schelbert HR. Radiolabelled acetate as a tracer of myocardial tricarboxylic acid cycle flux. Circ Res 1988; 63:628–634.

    PubMed  CAS  Google Scholar 

  44. Beanlands RS, Bach DS, Raylman R, et al. Acute effects of dobutamine on myocardial oxygen consumption and cardiac efficiency measured using carbon-11 acetate kinetics in patients with dilated cardiomyopathy. J Am Coll Cardiol 1993;22:1389–1398.

    PubMed  CAS  Google Scholar 

  45. Bengel FM, Permanetter B, Ungerer M, Nekolla S, Schwaiger M. Noninvasive estimation of myocardial efficiency using positron emission tomography and C-11 acetate: comparison between the normal and failing human heart. Eur J Nucl Med 2000;27:319–326.

    Article  PubMed  CAS  Google Scholar 

  46. Beanlands RS, Nahmias C, Gordon E, et al. The effects of beta(1)-blockade on oxidative metabolism and the metabolic cost of ventricular work in patients with left ventricular dysfunction: a double-blind, placebo-controlled, positron-emission tomography study. Circulation 2000;102:2070–2075.

    PubMed  CAS  Google Scholar 

  47. Bengel FM, Ueberfuhr P, Ziegler SI, Nekolla S, Reichart B, Schwaiger M. Serial assessment of sympathetic reinnervation after orthotopic heart transplantation: a longitudinal study using positron emission tomography and C-11 hydroxyephedrine. Circulation 1999;99:1866–1871.

    PubMed  CAS  Google Scholar 

  48. Di Carli MF, Tobes MC, Mangner T, et al. Effects of cardiac sympathetic innervation on coronary blood flow. N Engl J Med 1997;336:1208–1215.

    Article  PubMed  Google Scholar 

  49. Bengel FM, Ueberfuhr P, Schiepel N, Nekolla SG, Reichart B, Schwaiger M. Effect of sympathetic reinnervation on cardiac performance after heart transplantation. N Engl J Med 2001;345:731–738.

    Article  PubMed  CAS  Google Scholar 

  50. Bengel FM, Ueberfuhr P, Ziegler SI, et al. Noninvasive assessment of the effect of cardiac sympathetic innervation on metabolism of the human heart. Eur J Nucl Med 2000;27:1650–1657.

    Article  PubMed  CAS  Google Scholar 

  51. Allman KC, Wieland DM, Muzik O, Degrado TR, Wolfe ER Jr, Schwaiger M. Carbon-11 hydroxyephedrine with positron emission tomography for serial assessment of cardiac adrenergic neuronal function after acute myocardial infarction in humans. J Am Coll Cardiol 1993;22:368–375.

    PubMed  CAS  Google Scholar 

  52. Wichter T, Schafers M, Rhodes CG, et al. Abnormalities of cardiac sympathetic innervation in arrhythmogenic right ventricular cardiomyopathy: quantitative assessment of presynaptic norepinephrine reuptake and postsynaptic beta-adrenergic receptor density with positron emission tomography. Circulation 2000;101: 1552–1558.

    PubMed  CAS  Google Scholar 

  53. Calkins H, Allman K, Bolling S, et al. Correlation between scintigraphic evidence of regional sympathetic neuronal dysfunction and ventricular refractoriness in the human heart. Circulation 1993;88: 172–179.

    PubMed  CAS  Google Scholar 

  54. Ungerer M, Hartmann F, Karoglan M, et al. Regional in vivo and in vitro characterization of autonomic innervation in cardiomyopathic human heart. Circulation 1998;97:174–180.

    PubMed  CAS  Google Scholar 

  55. Vesalainen RK, Pietila M, Tahvanainen KU, et al. Cardiac positron emission tomography imaging with [11C]hydroxyephedrine, a specific tracer for sympathetic nerve endings, and its functional correlates in congestive heart failure. Am J Cardiol 1999;84:568–574.

    Article  PubMed  CAS  Google Scholar 

  56. Di Carli MF, Bianco-Batlles D, Landa ME, et al. Effects of autonomic neuropathy on coronary blood flow in patients with diabetes mellitus. Circulation 1999;100: 813–819.

    PubMed  Google Scholar 

  57. Pietila M, Malminiemi K, Ukkonen H, et al. Reduced myocardial carbon-11 hydroxyephedrine retention is associated with poor prognosis in chronic heart failure. Eur J Nucl Med 2001;28:373–376.

    Article  PubMed  CAS  Google Scholar 

  58. Merlet P, Delforge J, Syrota A, et al. Positron emission tomography with 11C CGP-12177 to assess beta-adrenergic receptor concentration in idiopathic dilated cardiomyopathy. Circulation 1993;87:1169–1178.

    PubMed  CAS  Google Scholar 

  59. Schafers M, Dutka D, Rhodes CG, et al. Myocardial presynaptic and postsynaptic autonomic dysfunction in hypertrophic cardiomyopathy. Circ Res 1998;82:57–62.

    PubMed  CAS  Google Scholar 

  60. Law MP, Osman S, Pike VW, et al. Evaluation of [11C]GB67, a novel radioligand for imaging myocardial alpha 1-adrenoceptors with positron emission tomography. Eur J Nucl Med 2000;27:7–17.

    Article  PubMed  CAS  Google Scholar 

  61. Momose M, Reder S, Raffel D, et al. Evaluation of cardiac β-adrenoceptors in the isolated perfused rat heart using (s)-[11C] CGP12388. J Nucl Med 2004;45:471–477.

    PubMed  CAS  Google Scholar 

  62. Le Guludec D, Cohen-Solal A, Delforge J, Delahaye N, Syrota A, Merlet P. Increased myocardial muscarinic receptor density in idiopathic dilated cardiomyopathy: an in vivo PET study. Circulation 1997;96:3416–3422.

    PubMed  Google Scholar 

  63. Haubner R, Wester HJ, Reuning U, et al. Radiolabeled alpha(v)beta3 integrin antagonists: a new class of tracers for tumor targeting. J Nucl Med 1999;40: 1061–1071.

    PubMed  CAS  Google Scholar 

  64. Strauss HW, Narula J, Blankenberg FG. Radioimaging to identify myocardial cell death and probably injury. Lancet 2000;356:180–181.

    Article  PubMed  CAS  Google Scholar 

  65. Grierson JR, Yagle KJ, Eary JF, et al. Production of [F-18]fluoroannexin for imaging apoptosis with PET. Bioconjug Chem 2004;15:373–379.

    Article  PubMed  CAS  Google Scholar 

  66. Avril N, Bengel FM. Defining the success of cardiac gene therapy: how can nuclear imaging contribute? Eur J Nucl Med Mol Imaging 2003;30:757–771.

    Article  PubMed  CAS  Google Scholar 

  67. Bengel FM, Anton M, Richter T, et al. Noninvasive imaging of transgene expression using positron emission tomography in a pig model of myocardial gene transfer. Circulation 2003;108:2127–2133.

    Article  PubMed  CAS  Google Scholar 

  68. Doubrovin M, Ponomarev V, Beresten T, et al. Imaging transcriptional regulation of p53-dependent genes with positron emission tomography in vivo. Proc Natl Acad Sci USA 2001;98:9300–9305.

    Article  PubMed  CAS  Google Scholar 

  69. Wu JC, Chen IY, Sundaresan G, et al. Molecular imaging of cardiac cell transplantation in living animals using optical bioluminescence and positron emission tomography. Circulation 2003;108:1302–1305.

    Article  PubMed  Google Scholar 

  70. Bar-Shalom R, Yefremov N, Guralnik L, et al. Clinical performance of PET/CT in evaluation of cancer: additional value for diagnostic imaging and patient management. J Nucl Med 2003;44:1200–1209.

    PubMed  Google Scholar 

  71. Lardinois D, Weder W, Hany TF, et al. Staging of non-small-cell lung cancer with integrated positron-emission tomography and computed tomography. N Engl J Med 2003;348:2500–2507.

    Article  PubMed  Google Scholar 

  72. Boucher L, Rodrigue S, Lecomte R, Benard F. Respiratory gating for 3-dimensional PET of the thorax: feasibility and initial results. J Nucl Med 2004;45:214–219.

    PubMed  Google Scholar 

  73. Phelps ME. PET: the merging of biology and imaging into molecular imaging. J Nucl Med 2000;41:661–681.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag London Limited

About this chapter

Cite this chapter

Bengel, F.M. (2006). Positron Emission Tomography. In: Anagnostopoulos, C.D., Nihoyannopoulos, P., Bax, J.J., van der Wall, E. (eds) Noninvasive Imaging of Myocardial Ischemia. Springer, London. https://doi.org/10.1007/1-84628-156-3_5

Download citation

  • DOI: https://doi.org/10.1007/1-84628-156-3_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-027-6

  • Online ISBN: 978-1-84628-156-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics