Skip to main content

Neuroprotection in Ophthalmology: A Review

  • Chapter
Stem Cell and Gene-Based Therapy

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Faden AI. Pharmacotherapy in spinal cord injury: a critical review of recent developments. Clin Neuropharmacol 1987;10:193–204.

    Article  CAS  PubMed  Google Scholar 

  2. Faden AI, Salzman S. Pharmacological strategies in CNS trauma. Trends Pharmacol Sci 1992;13:29–35.

    Article  CAS  PubMed  Google Scholar 

  3. Lynch DR, Dawson TM. Secondary mechanisms in neuronal trauma. Curr Opin Neurol 1994;7:510–516.

    Article  CAS  PubMed  Google Scholar 

  4. McIntosh TK. Novel pharmacologic therapies in the treatment of experimental traumatic brain injury: a review. J Neurotrauma 1993;10:215–261.

    Article  CAS  PubMed  Google Scholar 

  5. Miller RG, Mitchell JD, Lyon M, Moore DH. Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Amyotroph Lateral Scler Other Motor Neuron Disord 2003;4:191–206.

    Article  CAS  PubMed  Google Scholar 

  6. Tariot PN, Farlow MR, Grossberg GT, et al. Memantine treatment in patients with moderate to severe Alzheimer disease already receiving donepezil: a randomized controlled trial. JAMA 2004;291(3):317–324.

    Article  CAS  PubMed  Google Scholar 

  7. Garcia Valenzuela E, Shareef S, Walsh J, Sharma SC. Programmed cell death of retinal ganglion cells during experimental glaucoma. Exp Eye Res 1995;61:33–44.

    Article  CAS  PubMed  Google Scholar 

  8. Quigley HA, Nickells RW, Kerrigan LA, et al. Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis. Invest Ophthalmol Vis Sci 1995;36:774–786.

    CAS  PubMed  Google Scholar 

  9. Joo CK, Choi JS, Ko H, et al. Necrosis and apoptosis after retinal ischemia: involvement of NMDA-mediated excitotoxicity and p53. Invest Ophthalmol Vis Sci 1999;40:713–720.

    CAS  PubMed  Google Scholar 

  10. Lam TT, Abler AS, Kwong JM, Tso MO. N-methyl-D-aspartate (NMDA)-induced apoptosis in rat retina. Invest Ophthalmol Vis Sci 1999;40:2391–2397.

    CAS  PubMed  Google Scholar 

  11. Kerrigan LA, Zack DJ, Quigley HA, et al. TUNEL-positive ganglion cells in human primary open-angle glaucoma. Arch. Ophthalmol. 1997;115:1031–1035.

    Article  CAS  PubMed  Google Scholar 

  12. Levin LA, Louhab A. Apoptosis of retinal ganglion cells in anterior ischemic optic neuropathy. Arch Ophthalmol 1996;114:488–491.

    Article  CAS  PubMed  Google Scholar 

  13. Bamashmus MA, Matlhaga B, Dutton GN. Causes of blindness and visual impairment in the West of Scotland. Eye 2004;18(3):257–261.

    Article  CAS  PubMed  Google Scholar 

  14. Farber MD. National Registry for the Blind in Israel: estimation of prevalence and incidence rates and causes of blindness. Ophthalmic Epidemiol 2003;10(4):267–277.

    Article  PubMed  Google Scholar 

  15. Sakamoto K, Yonoki Y, Kuwagata M, Saito M, Nakahara T, Ishii K. Histological protection against ischemia-reperfusion injury by early ischemic preconditioning in rat retina. Brain Res 2004;1015:154–160.

    Article  CAS  PubMed  Google Scholar 

  16. Cheon EW, Kim HY, Cho YY, et al. Betaxolol, a beta1-adrenoceptor antagonist, protects a transient ischemic injury of the retina. Exp Eye Res 2002;75:591–601.

    Article  CAS  Google Scholar 

  17. Barnett NL, Osborne NN. Redistribution of GABA immunoreactivity following central retinal artery occlusion. Brain Res 1995;677:337–340.

    Article  CAS  PubMed  Google Scholar 

  18. Barnett NL, Osborne NN. Prolonged bilateral carotid artery occlusion induces electrophysiological and immunohistochemical changes to the rat retina without causing histological damage. Exp Eye Res 1995;61:83–90.

    Article  CAS  PubMed  Google Scholar 

  19. Mosinger JL, Price MT, Bai HY, et al. Blockade of both NMDA and non-NMDA receptors is required for optimal protection against ischemic neuronal degeneration in the in vivo adult mammalian retina. Exp Neurol 1991;113:10–17.

    Article  CAS  PubMed  Google Scholar 

  20. Osborne NN, Casson RJ, Wood JP, et al. Retinal ischemia: mechanisms of damage and potential therapeutic strategies. Prog Retin Eye Res 2004;23:91–147.

    Article  CAS  PubMed  Google Scholar 

  21. Choi D, Rothman SM. The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu Rev Neurosci 1990;13:171–182.

    Article  CAS  PubMed  Google Scholar 

  22. Choi DW. Glutamate neurotoxicity and diseases of the nervous system. Neuron 1988;1:623–634.

    Article  CAS  PubMed  Google Scholar 

  23. Meldrum B, Garthwaite J. Excitatory amino acid neurotoxicity and neurodegenerative disease. Trends Pharmacol Sci 1990;11:379–387.

    Article  CAS  PubMed  Google Scholar 

  24. Hahn JS, Aizenman E, Lipton SA. Central mammalian neurons normally resistant to glutamate toxicity are made sensitive by elevated extracellular Ca2+: toxicity is blocked by the N-methyl-D-aspartate antagonist MK-801. Proc Natl Acad Sci USA 1988;85:6556–6560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Levy DI, Lipton SA. Comparison of delayed administration of competitive and uncompetitive antagonists in preventing NMDA receptor-mediated neuronal death. Neurology 1990;40:852–855.

    Article  CAS  PubMed  Google Scholar 

  26. Sisk DR, Kuwabara T. Histologic changes in the inner retina of albino rats following intravitreal injection of monosodium L-glutamate. Graefes Arch Clin Exp Ophthalmol 1985;223:250–258.

    Article  CAS  PubMed  Google Scholar 

  27. Adachi K, Kashii S, Masai H, et al. Mechanism of the pathogenesis of glutamate neurotoxicity in retinal ischemia. Graefes Arch Clin Exp Ophthalmol 1998;236:766–774.

    Article  CAS  PubMed  Google Scholar 

  28. Sabel BA, Sautter J, Stoehr T, Siliprandi R. A behavioral model of excitotoxicity: retinal degeneration, loss of vision, and subsequent recovery after intraocular NMDA administration in adult rats. Exp Brain Res 1995;106:93–105.

    Article  CAS  PubMed  Google Scholar 

  29. Siliprandi R, Canella R, Carmignoto G, et al. N-methyl-D-aspartate-induced neurotoxicity in the adult rat retina. Vis Neurosci 1992;8:567–573.

    Article  CAS  PubMed  Google Scholar 

  30. Vorwerk CK, Lipton SA, Zurakowski D, et al. Chronic low-dose glutamate is toxic to retinal ganglion cells. Toxicity blocked by memantine. Invest Ophthalmol Vis Sci 1996;37:1618–1624.

    CAS  PubMed  Google Scholar 

  31. Dreyer EB, Zurakowski D, Schumer RA, et al. Elevated glutamate levels in the vitreous body of humans and monkeys with glaucoma. Arch Ophthalmol 1996;114:299–305.

    Article  CAS  PubMed  Google Scholar 

  32. Yoles E, Schwartz M. Elevation of intraocular glutamate levels in rats with partial lesion of the optic nerve. Arch Ophthalmol 1998;116:906–910.

    Article  CAS  PubMed  Google Scholar 

  33. Photocoagulation treatment of proliferative diabetic retinopathy: the second report of diabetic retinopathy study findings. Ophthalmology 1978;85:82–106.

    Google Scholar 

  34. The Macular Photocoagulation Study Group. Laser photocoagulation of subfoveal neovascular lesions in age-related macular degeneration. Results of a randomized clinical trial. Arch Ophthalmol 1991;109:1220–1231.

    Article  Google Scholar 

  35. The Macular Photocoagulation Study Group. Krypton laser photocoagulation for neovascular lesions of age-related macular degeneration. Results of a randomized clinical trial. Arch Ophthalmol 1990;108:816–824.

    Article  Google Scholar 

  36. Brancato R, Pece A, Avanza P, Radrizzani E. Photocoagulation scar expansion after laser therapy for choroidal neovascularization in degenerative myopia. Retina 1990;10:239–243.

    Article  CAS  PubMed  Google Scholar 

  37. Dastgheib K, Bressler SB, Green WR. Clinicopathologic correlation of laser lesion expansion after treatment of choroidal neovascularization. Retina 1993;13:345–352.

    Article  CAS  PubMed  Google Scholar 

  38. Kyoko M, Noriko U, Tomohiro Otani, Shoji K. Progressive enlargement of scattered photocoagulation scars in diabetic retinopathy. Retina 2004;24:507–511.

    Article  Google Scholar 

  39. Lai TYY, Chan WM, Lam DSC. Transient reduction in retinal function revealed by multifocal electroretinogram after photodynamic therapy. Am J Ophthalmol 2004;137:826–833.

    Article  PubMed  Google Scholar 

  40. Treatment of Age-related Macular Degeneration with Photodynamic Therapy (TAP) Study Group and Verteporfin in Photodynamic Therapy (VIP) Study Group. Acute severe visual acuity decrease after photodynamic therapy with verteporfin: case reports from randomized clinical trials — TAP and VIP report no. 3. Am J Ophthalmol 2004;137:683–696.

    Article  CAS  Google Scholar 

  41. Verteporfin in Photodynamic Therapy Study Group. Verteporfin therapy of subfoveal choroidal neovascularization in age-related macular degeneration: two-year results of a randomized clinical trial including lesions with occult with no classic choroidal neovascularization — verteporfin in photodynamic therapy report 2. Am J Ophthalmol 2001;131:541–560.

    Article  Google Scholar 

  42. Lam TT, Fu J, Takahashi K, Tso MOM. Methylprednisolone therapy in laser injury of the retina. Graefes Arch Clin Exp Ophthalmol 1993;231:729–736.

    Article  CAS  PubMed  Google Scholar 

  43. Solberg Y, Rosner M, Turetz J, Belkin M. MK-801 has neuroprotective and antiproliferative effects in retinal laser injury. Invest Ophthalmol Vis Sci 1997;38:1380–1389.

    CAS  PubMed  Google Scholar 

  44. Gaasterland D, Kupfer C. Experimental glaucoma in the rhesus monkey. Invest Ophthalmol Vis Sci 1974;13:455–457.

    CAS  Google Scholar 

  45. Pederson JE, Gaasterland DE. Laser-induced primate glaucoma. I. Progression of cupping. Arch Ophthalmol 1984;102:1689–1692.

    Article  CAS  PubMed  Google Scholar 

  46. Quigley HA, Hohman RM. Laser energy levels for trabecular meshwork damage in the primate eye. Invest Ophthalmol Vis Sci 1983;24:1305–1307.

    CAS  PubMed  Google Scholar 

  47. Radius RL, Pederson JE. Laser-induced primate glaucoma. II. Histopathology. Arch Ophthalmol 1984;102:1693–1698.

    Article  CAS  PubMed  Google Scholar 

  48. Morrison JC, Moore CG, Deppmeier LM, et al. A rat model of chronic pressure-induced optic nerve damage. Exp Eye Res 1997;64:85–96.

    Article  CAS  PubMed  Google Scholar 

  49. Shareef SR, Garcia-Valenzuela E, Salierno A. Chronic ocular hypertension following episcleral venous occlusion in rats. Exp Eye Res 1995;61:379–382.

    Article  CAS  PubMed  Google Scholar 

  50. Takita H, Yoneya S, Gehlbach PL, et al. Retinal neuroprotection against ischemic injury mediated by intraocular gene transfer of pigment epithelium-derived factor. Invest Ophthalmol Vis Sci 2003;44:4497–4504.

    Article  PubMed  Google Scholar 

  51. Yoles E, Schwartz M. Potential neuroprotective therapy for glaucomatous optic neuropathy. Surv Ophthalmol 1998;42(4):367–372.

    Article  CAS  PubMed  Google Scholar 

  52. Duvdevani R, Rosner M, Belkin M, et al. Graded crush of the rat optic nerve as a brain injury model: combining electrophysiological and behavioral outcome. Restor Neurol Neurosci 1990;2:31–38.

    CAS  PubMed  Google Scholar 

  53. Levkovitch-Verbin H, Quigley HA, Kerrigan-Baumrind LA, et al. Optic nerve transection in monkeys may result in secondary degeneration of retinal ganglion cells. Invest Ophthalmol Vis Sci 2001;42:975–982.

    CAS  PubMed  Google Scholar 

  54. Toriu N, Akaike A, Yasuyoshi H. Lomerizine, a Ca2+ channel blocker, reduces glutamate-induced neurotoxicity and ischemia/reperfusion damage in rat retina. Exp Eye Res 2000;70:475–484.

    Article  CAS  PubMed  Google Scholar 

  55. Yoles E, Muller S, Schwartz M. NMDA-receptor antagonist protects neurons from secondary degeneration after partial optic nerve crush. J Neurotrauma 1997;14:665–675.

    Article  CAS  PubMed  Google Scholar 

  56. Muir KW, Lees KR. Clinical experience with excitatory amino acid antagonist drugs. Stroke 1995;26:503–513.

    Article  CAS  PubMed  Google Scholar 

  57. Yoon YH, Marmor MF. Dextromethorphan protects retina against ischemic injury in vivo. Arch Ophthalmol 1989;107:409–411.

    Article  CAS  PubMed  Google Scholar 

  58. Calzada JI, Jones BE, Netland PA, Johnson DA. Glutamate-induced excitotoxicity in retina: neuroprotection with receptor antagonist, dextromethorphan, but not with calcium channel blockers. Neurochem Res 2002;27:79–88.

    Article  CAS  PubMed  Google Scholar 

  59. Osborne NN, Schwarz M, Pergande G. Protection of rabbit retina from ischemic injury by flupirtine. Invest Ophthalmol Vis Sci 1996;37:274–280.

    CAS  PubMed  Google Scholar 

  60. Nash MS, Wood JP, Melena J, Osborne NN. Flupirtine ameliorates ischaemic-like death of rat retinal ganglion cells by preventing calcium influx. Brain Res 2000;856:236–239.

    Article  CAS  PubMed  Google Scholar 

  61. Ettaiche M, Fillacier K, Widmann C, et al. Riluzole improves functional recovery after ischemia in the rat retina. Invest Ophthalmol Vis Sci 1999;40:729–736.

    CAS  PubMed  Google Scholar 

  62. Nat Rev Drug Discov 2004;3:S38–S40.

    Google Scholar 

  63. Livingston G, Katona C. The place of memantine in the treatment of Alzheimer’s disease: a number needed to treat analysis. Int J Geriatr Psychiatry 2004;19:919–925.

    Article  PubMed  Google Scholar 

  64. Osborne NN. Memantine reduces alterations to the mammalian retina, in situ, induced by ischemia. Vis Neurosci 1999;16:45–52.

    Article  CAS  PubMed  Google Scholar 

  65. Hare WA, WoldeMussie E, Weinreb RN, et al. Efficacy and safety of memantine treatment for reduction of changes associated with experimental glaucoma in monkey. II. Structural measures. Invest Ophthalmol Vis Sci 2004;45:2640–2651.

    Article  PubMed  Google Scholar 

  66. Hare WA, WoldeMussie E, Lai RK, et al. Efficacy and safety of memantine treatment for reduction of changes associated with experimental glaucoma in monkey. I. Functional measures. Invest Ophthalmol Vis Sci 2004;45:2625–2639.

    Article  PubMed  Google Scholar 

  67. Jain KK. Evaluation of memantine for neuroprotection in dementia. Expert Opin Investig Drugs 2000;9:1397–1406.

    Article  CAS  PubMed  Google Scholar 

  68. Merello M, Nouzeilles MI, Cammarota A, Leiguarda R. Effect of memantine (NMDA antagonist) on Parkinson’s disease: a double-blind crossover randomized study. Clin Neuropharmacol 1999;22:273–276.

    CAS  PubMed  Google Scholar 

  69. Wiech K, Kiefer RT, Topfner S, et al. A placebo-controlled randomized crossover trial of the N-methyl-D-aspartic acid receptor antagonist, memantine in patients with chronic phantom limb pain. Anesth Analg 2004;98:408–413.

    Article  CAS  PubMed  Google Scholar 

  70. Green BA, Kahn T, Klose KJ. A comparative study of steroid therapy in acute experimental spinal cord injury. Surg Neurol 1980;13:91–97.

    CAS  PubMed  Google Scholar 

  71. Hall ED. High-dose glucocorticoid treatment improves neurological recovery in head-injured mice. J Neurosurg 1985;62:882–887.

    Article  CAS  PubMed  Google Scholar 

  72. Means ED, Anderson DK, Waters TR, Kalaf L. Effect of methylprednisolone in compression trauma to the feline spinal cord. J Neurosurg 1981;55(2):200–208.

    Article  CAS  PubMed  Google Scholar 

  73. Bracken MB, Shepard MJ, Collins WF, et al. A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. Results of the Second National Acute Spinal Cord Injury Study. N Engl J Med 1990;322:1405–1411.

    Article  CAS  PubMed  Google Scholar 

  74. Takahashi K, Lam TT, Fu J, Tso MOM. The effect of high-dose methylprednisolone on laser-induced retinal injury in primates: an electron microscopic study. Graefes Arch Clin Exp Ophthalmol 1997;235:723–732.

    Article  CAS  PubMed  Google Scholar 

  75. Naveh N, Weissman C. Corticosteroid treatment of laser retinal damage affects prostaglandin E2 response. Invest Ophthalmol Vis Sci 1990;31:9–13.

    CAS  PubMed  Google Scholar 

  76. Wilson CA, Berkowitz BA, Sato Y, et al. Treatment with intravitreal steroid reduces blood-retinal breakdown due to retinal photocoagulation. Arch Ophthalmol 1992;110:1155–1159.

    Article  CAS  PubMed  Google Scholar 

  77. Ishibashi T, Miki K, Sorgente N, et al. Effects of intravitreal administration of steroids on experimental subretinal neovascularization in the subhuman primate. Arch Ophthalmol 1985;103:708–711.

    Article  CAS  PubMed  Google Scholar 

  78. Rosner M, Solberg Y, Turetz J, Belkin M. Neuroprotective therapy for argon-laser induced retinal injury. Exp Eye Res 1997;65:485–495.

    Article  CAS  PubMed  Google Scholar 

  79. Hirschberg DL, Yoles E, Belkin M, Schwartz M. Inflammation after axonal injury has conflicting consequences for recovery of function: rescue of spared axons is impaired but regeneration is supported. J Neuroimmunol 1994;50:9–11.

    Article  CAS  PubMed  Google Scholar 

  80. Marshall J. Structural aspects of laser induced damage and their functional implications. Health Phys 1989;56:617–624.

    Article  CAS  PubMed  Google Scholar 

  81. Schuschereba ST, Cross ME, Pizarro JAM, et al. High dose methylprednisolone treatment of laser-induced retinal injury exacerbates acute inflammation and long-term scarring [abstract]. Int Symp Biomed Optics 1999:40.

    Google Scholar 

  82. Yoles E, Wheeler LA, Schwartz M. Alpha2-adrenoreceptor agonists are neuroprotective in a rat model of optic nerve degeneration. Invest Ophthalmol Vis Sci 1999;40:65–73.

    CAS  PubMed  Google Scholar 

  83. Donello JE, Padillo EU, Webster ML, et al. Alpha(2)-adrenoceptor agonists inhibit vitreal glutamate and aspartate accumulation and preserve retinal function after transient ischemia. J Pharmacol Exp Ther 2001;296:216–223.

    CAS  PubMed  Google Scholar 

  84. Gao H, Qiao X, Cantor LB, WuDunn D. Up-regulation of brain-derived neurotrophic factor expression by brimonidine in rat retinal ganglion cells. Arch Ophthalmol 2002;120(6):797–803.

    Article  CAS  PubMed  Google Scholar 

  85. Evans DW, Hosking SL, Gherghel D, Bartlett JD. Contrast sensitivity improves after brimonidine therapy in primary open angle glaucoma: a case for neuroprotection. Br J Ophthalmol 2003;87:1463–1465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Osborne NN, Cazevieille C, Carvalho AL, et al. In vivo and in vitro experiments show that betaxolol is a retinal neuroprotective agent. Brain Res 1997;751:113–123.

    Article  CAS  PubMed  Google Scholar 

  87. Osborne NN, DeSantis L, Bae JH, et al. Topically applied betaxolol attenuates NMDA-induced toxicity to ganglion cells and the effects of ischaemia to the retina. Exp Eye Res 1999;69:331–342.

    Article  CAS  PubMed  Google Scholar 

  88. Choi DW. Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci 1988;11:465–469.

    Article  CAS  PubMed  Google Scholar 

  89. Eschweiler GW, Bähr M. Flunarizine enhances rat retinal ganglion cell survival after axotomy. J Neurol Sci 1993;116:34–40.

    Article  CAS  PubMed  Google Scholar 

  90. Takahashi K, Lam TT, Edward DP, et al. Protective effects of flunarizine on ischemic injury in the rat retina. Arch Ophthalmol 1992;110:862–870.

    Article  CAS  PubMed  Google Scholar 

  91. Netland PA, Chaturvedi N, Dreyer EB. Calcium channel blockers in the management of low-tension and open-angle glaucoma. Am J Ophthalmol 1993;115:608–613.

    Article  CAS  PubMed  Google Scholar 

  92. Dawson VL, Dawson TM, Bartley DA, et al. Mechanisms of nitric oxide-mediated neurotoxicity in primary brain cultures. J Neurosci 1993;13:2651–2661.

    CAS  PubMed  Google Scholar 

  93. Malinski T, Bailey F, Zhang ZG, Chopp M. Nitric oxide measured by a porphyrinic microsensor in rat brain after transient middle cerebral artery occlusion. J Cereb Blood Flow Metab 1993;13:355–358.

    Article  CAS  PubMed  Google Scholar 

  94. Neufeld AH. Nitric oxide: a potential mediator of retinal ganglion cell damage in glaucoma. Surv Ophthalmol 1999;43(suppl 1):S129–135.

    Article  PubMed  Google Scholar 

  95. Neufeld AH, Hernandez MR, Gonzalez M. Nitric oxide synthase in the human glaucomatous optic nerve head. Arch Ophthalmol 1997;115:497–503.

    Article  CAS  PubMed  Google Scholar 

  96. Shareef S, Sawada A, Neufeld AH. Isoforms of nitric oxide synthase in the optic nerves of rat eyes with chronic moderately elevated intraocular pressure. Invest Ophthalmol Vis Sci 1999;40:2884–2891.

    CAS  PubMed  Google Scholar 

  97. Liu B, Neufeld AH. Activation of epidermal growth factor receptor signals induction of nitric oxide synthase-2 in human optic nerve head astrocytes in glaucomatous optic neuropathy. Neurobiol Dis 2003;13:109–123.

    Article  CAS  PubMed  Google Scholar 

  98. Neufeld AH, Sawada A, Becker B. Inhibition of nitricoxide synthase 2 by aminoguanidine provides neuroprotection of retinal ganglion cells in a rat model of chronic glaucoma. Proc Natl Acad Sci USA 1999;96:9944–9948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zhang C, Lei B, Lam TT, Yang F, Sinha D, Tso MO. Neuroprotection of photoreceptors by minocycline in light-induced retinal degeneration. Invest Ophthalmol Vis Sci 2004;45:2753–2759.

    Article  PubMed  Google Scholar 

  100. Baptiste DC, Hartwick AT, Jollimore CA, Baldridge WH, Seigel GM, Kelly ME. An investigation of the neuroprotective effects of tetracycline derivatives in experimental models of retinal cell death. Mol Pharmacol 2004;66:1113–1122.

    Article  CAS  PubMed  Google Scholar 

  101. Hughes EH, Schlichtenbrede FC, Murphy CC, et al. Minocycline delays photoreceptor death in the rds mouse through a microglia-independent mechanism. Exp Eye Res 2004;78:1077–1084.

    Article  CAS  PubMed  Google Scholar 

  102. Tsuji M, Wilson MA, Lange MS, Johnston MV. Minocycline worsens hypoxic-ischemic brain injury in a neonatal mouse model. Exp Neurol 2004;189:58–65.

    Article  CAS  PubMed  Google Scholar 

  103. Diguet E, Gross CE, Tison F, Bezard E. Rise and fall of minocycline in neuroprotection: need to promote publication of negative results. Exp Neurol 2004;189:1–4.

    Article  CAS  PubMed  Google Scholar 

  104. Mansour-Robaey S, Clarke DB, Wang YC, et al. Effects of ocular injury and administration of brain-derived neurotrophic factor on survival and regrowth of axotomized retinal ganglion cells. Proc Natl Acad Sci USA 1994;91:1632–1636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Peinado-Ramon P, Salvador M, Villegas-Perez MP, et al. Effects of axotomy and intraocular administration of NT-4, NT-3, and brain-derived neurotrophic factor on the survival of adult rat retinal ganglion cells. A quantitative in vivo study. Invest Ophthalmol Vis Sci 1996;37:489–500.

    CAS  PubMed  Google Scholar 

  106. Sawai H, Clarke DB, Kittlerova P, et al. Brain derived growth factor and neurotrophin 4/5 stimulate growth of axonal branches from regenerating retinal ganglion cells. J Neurosci 1996;16:3887–3894.

    CAS  PubMed  Google Scholar 

  107. Chen H, Weber AJ. BDNF enhances retinal ganglion cell survival in cats with optic nerve damage. Invest Ophthalmol Vis Sci 2001;42:966–974.

    CAS  PubMed  Google Scholar 

  108. Quigley HA, McKinnon SJ, Zack DJ, et al. Retrograde axonal transport of BDNF in retinal ganglion cells is blocked by acute IOP elevation in rats. Invest Ophthalmol Vis Sci 2000;41:3460–3466.

    CAS  PubMed  Google Scholar 

  109. Isenmann S, Kretz A, Cellerino A. Molecular determinants of retinal ganglion cell development, survival, and regeneration. Prog Retin Eye Res 2003;22:483–543.

    Article  CAS  PubMed  Google Scholar 

  110. Kalra S, Genge A, Arnold DL. A prospective, randomized, placebo-controlled evaluation of corticoneuronal response to intrathecal BDNF therapy in ALS using magnetic resonance spectroscopy: feasibility and results. Amyotroph Lateral Scler Other Motor Neuron Disord 2003;4:22–26.

    Article  CAS  PubMed  Google Scholar 

  111. Schwartz M. Neurodegeneration and neuroprotection in glaucoma: development of a therapeutic neuroprotective vaccine. The Friedenwald lecture. Invest Ophthalmol Vis Sci 2003;44:1407–1411.

    Article  PubMed  Google Scholar 

  112. Bakalash S, Kipnis J, Yoles E, Schwartz M. Resistance of retinal ganglion cells to an increase in intraocular pressure is immune-dependent. Invest Ophthalmol Vis Sci 2002;43:2648–2653.

    PubMed  Google Scholar 

  113. Yoles E, Hauben E, Palgi O. Protective autoimmunity is a physiological response to CNS trauma. J Neurosci 2001;21:3740–3748.

    CAS  PubMed  Google Scholar 

  114. Schwartz M, Kipnis J. Self and non-self discrimination is needed for the existence rather than deletion of autoimmunity: the role of regulatory T cells in protective autoimmunity. Cell Mol Life Sci 2004;61:2285–2289.

    Article  CAS  PubMed  Google Scholar 

  115. Nevo U, Golding I, Neumann AU, Schwartz M, Akselrod S. Autoimmunity as an immune defense against degenerative processes: a primary mathematical model illustrating the bright side of autoimmunity. J Theor Biol 2004;21;227:583–592.

    Article  Google Scholar 

  116. Kipnis J, Avidan H, Markovich Y, et al. Low-dose gamma-irradiation promotes survival of injured neurons in the central nervous system via homeostasis-driven proliferation of T cells. Eur J Neurosci 2004;19:1191–1198.

    Article  PubMed  Google Scholar 

  117. Hirschberg DL, Moalem G, He J, et al. Accumulation of passively transferred primed T cells independently of their antigen specificity following central nervous system trauma. J Neuroimmunol 1998;89:88–96.

    Article  CAS  PubMed  Google Scholar 

  118. Moalem G, Leibowitz-Amit R, Yoles E. Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nat Med 1999;5:49–55.

    Article  CAS  PubMed  Google Scholar 

  119. Moalem G, Yoles E, Leibowitz-Amit R, et al. Autoimmune T cells retard the loss of function in injured rat optic nerves. J Neuroimmunol 2000;106:189–197.

    Article  CAS  PubMed  Google Scholar 

  120. Fisher J, Levkovitch-Verbin H, Schori H, et al. Vaccination for neuroprotection in the mouse optic nerve: implications for optic neuropathies. J Neurosci 2001;21:136–142.

    CAS  PubMed  Google Scholar 

  121. Schori H, Kipnis J, Eti Yoles E, et al. Vaccination for protection of retinal ganglion cells against death from glutamate cytotoxicity and ocular hypertension: implications for glaucoma. Proc Natl Acad Sci USA 2001;98:3398–3403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Schwartz M, Kipnis J. A common vaccine for fighting neurodegenerative disorders: recharging immunity for homeostasis. Trends Pharmacol Sci 2004;25:407–412.

    Article  CAS  PubMed  Google Scholar 

  123. Schori H, Kipnis J, Eti Yoles E, et al. Vaccination for protection of retinal ganglion cells against death from glutamate cytotoxicity and ocular hypertension: implications for glaucoma. Proc Natl Acad Sci USA 2001;98:3398–3403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Schwartz M. Vaccination for glaucoma: dream or reality? Brain Res Bull 2004;15(62):481–484.

    Article  CAS  Google Scholar 

  125. Bakalash S, Kessler A, Mizrahi T, Nussenblatt R, Schwartz M. Antigenic specificity of immunoprotective therapeutic vaccination for glaucoma. Invest Ophthalmol Vis Sci 2003;44:3374–3381.

    Article  PubMed  Google Scholar 

  126. Scwartz M. Optic nerve crush: protection and regeneration. Brain Res Bull 2004;15(62):467–471.

    Article  CAS  Google Scholar 

  127. Shaked I, Porat Z, Gersner R, Kipnis J, Schwartz M. Early activation of microglia as antigen-presenting cells correlate with T cell-mediated protection and repair of the injured central nervous system. J Neuroimmunol 2004;146:84–93.

    Article  CAS  PubMed  Google Scholar 

  128. Moalem G, Gdalyahu A, Shani Y, et al. Production of neurotrophins by activated T cells: implications for neuroprotective autoimmunity. J Autoimmun 2000;15:331–345.

    Article  CAS  PubMed  Google Scholar 

  129. Schwartz M, Shaked I, Fisher J, Mizrahi T, Schori H. Protective autoimmunity against the enemy within: fighting glutamate toxicity. Trends Neurosci 2003;26:297–302.

    Article  CAS  PubMed  Google Scholar 

  130. Symon L, Astrup J. Phenomena associated with focal ischaemia in the central nervous system. Acta Neurochir Suppl (Wien) 1979;28(1):215–217.

    CAS  Google Scholar 

  131. Agnoli A, Palesse N, Ruggieri S, Leonardis G, Benzi G. Barbiturate treatment of acute stroke. Adv Neurol 1979;25:269–274.

    CAS  PubMed  Google Scholar 

  132. Li ZY, Tso MO, Wang HM, Organisciak DT. Amelioration of photic injury in rat retina by ascorbic acid: a histopathologic study. Invest Ophthalmol Vis Sci 1985;26:1589–1598.

    CAS  PubMed  Google Scholar 

  133. Schwartz M, Belkin M, Yoles E, Solomon A. Potential treatment modalities for glaucomatous neuropathy: neuroprotection and neuroregeneration. J Glaucoma 1996;5:427–432.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag London Limited

About this chapter

Cite this chapter

Barkana, Y., Belkin, M. (2006). Neuroprotection in Ophthalmology: A Review. In: Stem Cell and Gene-Based Therapy. Springer, London. https://doi.org/10.1007/1-84628-142-3_17

Download citation

  • DOI: https://doi.org/10.1007/1-84628-142-3_17

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-979-1

  • Online ISBN: 978-1-84628-142-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics