Skip to main content

Mesenchymal Stem Cells: Where Can You Find Them? How Can You Use Them?

  • Chapter
Stem Cell and Gene-Based Therapy

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pera MF, Reubinoff B, Trounson A. Human embryonic stem cells. J Cell Sci 2000;113(pt 1):5–10.

    CAS  PubMed  Google Scholar 

  2. Odorico JS, Kaufman DS, Thomson JA. Multilineage differentiation from human embryonic stem cell lines. Stem Cells 2001;19(3):193–204.

    Article  CAS  PubMed  Google Scholar 

  3. Friedenstein AJ. Precursor cells of mechanocytes. Int Rev Cytol 1976;47:327–359.

    Article  CAS  PubMed  Google Scholar 

  4. Friedenstein AJ. Marrow stromal fibroblasts. Calcif Tissue Int 1995;56(suppl 1):S17.

    Article  CAS  Google Scholar 

  5. Friedenstein AJ, Chailakhyan RK, Gerasimov UV. Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet 1987;20(3):263–272.

    CAS  PubMed  Google Scholar 

  6. Owen M, Friedenstein AJ. Stromal stem cells: marrow-derived osteogenic precursors. Ciba Found Symp 1988;136:42–60.

    CAS  PubMed  Google Scholar 

  7. Caplan AI. Mesenchymal stem cells. J Orthop Res 1991;9(5):641–650.

    Article  CAS  PubMed  Google Scholar 

  8. Kuznetsov SA, Friedenstein AJ, Robey PG. Factors required for bone marrow stromal fibroblast colony formation in vitro. Br J Haematol 1997;97(3):561–570.

    Article  CAS  PubMed  Google Scholar 

  9. Bruder SP, Jaiswal N, Haynesworth SE. Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 1997;64(2):278–294.

    Article  CAS  PubMed  Google Scholar 

  10. Bianco P, Riminucci M, Gronthos S, Robey PG. Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 2001;19(3):180–192.

    Article  CAS  PubMed  Google Scholar 

  11. Barry FP, Murphy JM. Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol 2004;36(4):568–584.

    Article  CAS  PubMed  Google Scholar 

  12. Beresford JN, Bennett JH, Devlin C, Leboy PS, Owen ME. Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures. J Cell Sci 1992;102(pt 2):341–351.

    CAS  PubMed  Google Scholar 

  13. Muraglia A, Cancedda R, Quarto R. Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model. J Cell Sci 2000;113(pt 7):1161–1166.

    CAS  PubMed  Google Scholar 

  14. Ahdjoudj S, Lasmoles F, Oyajobi BO, Lomri A, Delannoy P, Marie PJ. Reciprocal control of osteoblast/chondroblast and osteoblast/adipocyte differentiation of multipotential clonal human marrow stromal F/STRO-1(+) cells. J Cell Biochem 2001;81(1):23–38.

    Article  CAS  PubMed  Google Scholar 

  15. Ferrari G, Cusella-De Angelis G, Coletta M, et al. Muscle regeneration by bone marrow-derived myogenic progenitors [see comments]. Science 1998;279(5356):1528–1530.

    Article  CAS  PubMed  Google Scholar 

  16. Gussoni E, Soneoka Y, Strickland CD, et al. Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 1999;401(6751):390–394.

    CAS  PubMed  Google Scholar 

  17. Petersen BE, Bowen WC, Patrene KD, et al. Bone marrow as a potential source of hepatic oval cells. Science 1999;284(5417):1168–1170.

    Article  CAS  PubMed  Google Scholar 

  18. Lagasse E, Connors H, Al-Dhalimy M, et al. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med 2000;6(11):1229–1234.

    Article  CAS  PubMed  Google Scholar 

  19. Alison MR, Poulsom R, Jeffery R, et al. Hepatocytes from non-hepatic adult stem cells. Nature 2000;406(6793):257.

    Article  CAS  PubMed  Google Scholar 

  20. Banfi A, Muraglia A, Dozin B, Mastrogiacomo M, Cancedda R, Quarto R. Proliferation kinetics and differentiation potential of ex vivo expanded human bone marrow stromal cells: implications for their use in cell therapy. Exp Hematol 2000;28(6):707–715.

    Article  CAS  PubMed  Google Scholar 

  21. Bianchi G, Muraglia A, Daga A, Corte G, Cancedda R, Quarto R. Microenvironment and stem properties of bone marrow-derived mesenchymal cells. Wound Repair Regen 2001;9(6):460–466.

    Article  CAS  PubMed  Google Scholar 

  22. Banfi A, Bianchi G, Notaro R, Luzzatto L, Cancedda R, Quarto R. Replicative aging and gene expression in long-term cultures of human bone marrow stromal cells. Tissue Eng 2002;8(6):901–910.

    Article  CAS  PubMed  Google Scholar 

  23. Pitaru S, Kotev-Emeth S, Noff D, Kaffuler S, Savion N. Effect of basic fibroblast growth factor on the growth and differentiation of adult stromal bone marrow cells: enhanced development of mineralized bone-like tissue in culture. J Bone Miner Res 1993;8(8):919–929.

    Article  CAS  PubMed  Google Scholar 

  24. Gronthos S, Simmons PJ. The growth factor requirements of STRO-1-positive human bone marrow stromal precursors under serum-deprived conditions in vitro. Blood 1995;85(4):929–940.

    CAS  PubMed  Google Scholar 

  25. Martin I, Muraglia A, Campanile G, Cancedda R, Quarto R. Fibroblast growth factor-2 supports ex vivo expansion and maintenance of osteogenic precursors from human bone marrow. Endocrinology 1997; 138(10):4456–4462.

    CAS  PubMed  Google Scholar 

  26. Locklin RM, Oreffo RO, Triffitt JT. Effects of TGFbeta and bFGF on the differentiation of human bone marrow stromal fibroblasts. Cell Biol Int 1999;23(3):185–194.

    Article  CAS  PubMed  Google Scholar 

  27. Bianchi G, Banfi A, Mastrogiacomo M, Notaro R, Luzzatto L, Cancedda R, et al. Ex vivo enrichment of mesenchymal cell progenitors by fibroblast growth factor 2. EXP Cell Res 2003;287(1):98–105.

    Article  CAS  PubMed  Google Scholar 

  28. Reyes M, Lund T, Lenvik T, Aguiar D, Koodie L, Verfaillie CM. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood 2001;98(9):2615–2625.

    Article  CAS  PubMed  Google Scholar 

  29. Lee OK, Kuo TK, Chen WM, Lee KD, Hsieh SL, Chen TH. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 2004;103(5):1669–1675.

    Article  CAS  PubMed  Google Scholar 

  30. Erices A, Conget P, Minguell JJ. Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 2000;109(1):235–242.

    Article  CAS  PubMed  Google Scholar 

  31. Goodwin HS, Bicknese AR, Chien SN, Bogucki BD, Quinn CO, Wall DA. Multilineage differentiation activity by cells isolated from umbilical cord blood: expression of bone, fat, and neural markers. Biol Blood Marrow Transplant 2001;7(11):581–588.

    Article  CAS  PubMed  Google Scholar 

  32. Szilvassy SJ, Meyerrose TE, Ragland PL, Grimes B. Differential homing and engraftment properties of hematopoietic progenitor cells from murine bone marrow, mobilized peripheral blood, and fetal liver. Blood 2001;98(7):2108–2115.

    Article  CAS  PubMed  Google Scholar 

  33. Kogler G, Sensken S, Airey JA, et al. A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med 2004;200(2):123–135.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Airey JA, Almeida-Porada G, Colletti EJ, et al. Human mesenchymal stem cells form Purkinje fibers in fetal sheep heart. Circulation 2004;109(11):1401–1407.

    Article  PubMed  Google Scholar 

  35. Le Moigne A, Martelly I, Barlovatz-Meimon G, et al. Characterization of myogenesis from adult satellite cells cultured in vitro. Int J Dev Biol 1990;34(1):171–180.

    PubMed  Google Scholar 

  36. Seale P, Asakura A, Rudnicki MA. The potential of muscle stem cells. Dev Cell 2001;1(3):333–342.

    Article  CAS  PubMed  Google Scholar 

  37. Asakura A, Komaki M, Rudnicki M. Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation. Differentiation 2001;68(4–5):245–253.

    Article  CAS  PubMed  Google Scholar 

  38. Wada MR, Inagawa-Ogashiwa M, Shimizu S, Yasumoto S, Hashimoto N. Generation of different fates from multipotent muscle stem cells. Development 2002;129(12):2987–2995.

    CAS  PubMed  Google Scholar 

  39. Levy MM, Joyner CJ, Virdi AS, et al. Osteoprogenitor cells of mature human skeletal muscle tissue: an in vitro study. Bone 2001;29(4):317–322.

    Article  CAS  PubMed  Google Scholar 

  40. Minasi MG, Riminucci M, De Angelis L, et al. The meso-angioblast: a multipotent, self-renewing cell that originates from the dorsal aorta and differentiates into most mesodermal tissues. Development 2002;129(11):2773–2783.

    CAS  PubMed  Google Scholar 

  41. Diaz-Flores L, Gutierrez R, Varela H, Rancel N, Valladares F. Microvascular pericytes: a review of their morphological and functional characteristics. Histol Histopathol 1991;6(2):269–286.

    CAS  PubMed  Google Scholar 

  42. Diaz-Flores L, Gutierrez R, Lopez-Alonso A, Gonzalez R, Varela H. Pericytes as a supplementary source of osteoblasts in periosteal osteogenesis. Clin Orthop 1992(275):280–286.

    PubMed  Google Scholar 

  43. Decker B, Bartels H, Decker S. Relationships between endothelial cells, pericytes, and osteoblasts during bone formation in the sheep femur following implantation of tricalcium phosphate-ceramic. Anat Rec 1995;242(3):310–320.

    Article  CAS  PubMed  Google Scholar 

  44. Hirschi KK, D’Amore PA. Pericytes in the microvasculature. Cardiovasc Res 1996;32(4):687–698.

    Article  CAS  PubMed  Google Scholar 

  45. Doherty MJ, Ashton BA, Walsh S, Beresford JN, Grant ME, Canfield AE. Vascular pericytes express osteogenic potential in vitro and in vivo. J Bone Miner Res 1998;13(5):828–838.

    Article  CAS  PubMed  Google Scholar 

  46. Doherty MJ, Canfield AE. Gene expression during vascular pericyte differentiation. Crit Rev Eukaryot Gene Expr 1999;9(1):1–17.

    CAS  PubMed  Google Scholar 

  47. Lee HS, Huang GT, Chiang H, et al. Multipotential mesenchymal stem cells from femoral bone marrow near the site of osteonecrosis. Stem Cells 2003;21(2):190–199.

    Article  CAS  PubMed  Google Scholar 

  48. Suva D, Garavaglia G, Menetrey J, et al. Non-hematopoietic human bone marrow contains long-lasting, pluripotential mesenchymal stem cells. J Cell Physiol 2004;198(1):110–118.

    Article  CAS  PubMed  Google Scholar 

  49. Fell HB. The osteogenic capacity in vivo of periosteum and endosteum isolated from the limb skeleton of fowl embryos and young chicks. J Anat 1932;66:157.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Nakahara H, Bruder SP, Haynesworth SE, et al. Bone and cartilage formation in diffusion chambers by subcultured cells derived from the periosteum. Bone 1990;11(3):181–188.

    Article  CAS  PubMed  Google Scholar 

  51. Vacanti CA, Bonassar LJ, Vacanti MP, Shufflebarger J. Replacement of an avulsed phalanx with tissue-engineered bone. N Engl J Med 2001;344(20):1511–1514.

    Article  CAS  PubMed  Google Scholar 

  52. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 1994;331(14):889–895.

    Article  CAS  PubMed  Google Scholar 

  53. Hutmacher DW, Sittinger M. Periosteal cells in bone tissue engineering. Tissue Eng 2003;9(suppl 1):S45–64.

    Article  CAS  PubMed  Google Scholar 

  54. De Bari C, Dell’Accio F, Vandenabeele F, Vermeesch JR, Raymackers JM, Luyten FP. Skeletal muscle repair by adult human mesenchymal stem cells from synovial membrane. J Cell Biol 2003;160(6):909–918.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Halvorsen YD, Franklin D, Bond AL, et al. Extracellular matrix mineralization and osteoblast gene expression by human adipose tissue-derived stromal cells. Tissue Eng 2001;7(6):729–741.

    Article  CAS  PubMed  Google Scholar 

  56. Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 2002;13(12):4279–4295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cowan CM, Shi YY, Aalami OO, et al. Adipose-derived adult stromal cells heal critical-size mouse calvarial defects. Nat Biotechnol 2004;22(5):560–567.

    Article  CAS  PubMed  Google Scholar 

  58. Goshima J, Goldberg VM, Caplan AI. The osteogenic potential of culture-expanded rat marrow mesenchymal cells assayed in vivo in calcium phosphate ceramic blocks. Clin Orthop 1991;262:298–311.

    PubMed  Google Scholar 

  59. Bruder SP, Kraus KH, Goldberg VM, Kadiyala S. The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects. J Bone Joint Surg Am 1998;80(7):985–996.

    CAS  PubMed  Google Scholar 

  60. Kon E, Muraglia A, Corsi A, et al. Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res 2000;49(3):328–337.

    Article  CAS  PubMed  Google Scholar 

  61. Petite H, Viateau V, Bensaid W, et al. Tissue-engineered bone regeneration. Nat Biotechnol 2000;18(9):959–963.

    Article  CAS  PubMed  Google Scholar 

  62. Quarto R, Mastrogiacomo M, Cancedda R, et al. Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med 2001;344(5):385–386.

    Article  CAS  PubMed  Google Scholar 

  63. Muraglia A, Corsi A, Riminucci M, et al. Formation of a chondro-osseous rudiment in micromass cultures of human bone-marrow stromal cells. J Cell Sci 2003;116(pt 14):2949–2955.

    Article  CAS  PubMed  Google Scholar 

  64. Sandell LJ, Aigner T. Articular cartilage and changes in arthritis. An introduction: cell biology of osteoarthritis. Arthritis Res 2001;3(2):107–113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Dozin B, Malpeli M, Camardella L, Cancedda R, Pietrangelo A. Response of young, aged and osteoarthritic human articular chondrocytes to inflammatory cytokines: molecular and cellular aspects. Matrix Biol 2002;21(5):449–459.

    Article  CAS  PubMed  Google Scholar 

  66. Benya PD, Padilla SR, Nimni ME. Independent regulation of collagen types by chondrocytes during the loss of differentiated function in culture. Cell 1978;15(4):1313–1321.

    Article  CAS  PubMed  Google Scholar 

  67. Hunziker EB. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis Cartilage 2002;10(6):432–463.

    Article  CAS  PubMed  Google Scholar 

  68. Malpeli M, Randazzo N, Cancedda R, Dozin B. Serumfree growth medium sustains commitment of human articular chondrocyte through maintenance of Sox9 expression. Tissue Eng 2004;10(1–2):145–155.

    Article  CAS  PubMed  Google Scholar 

  69. Solchaga LA, Yoo JU, Lundberg M, et al. Hyaluronan-based polymers in the treatment of osteochondral defects. J Orthop Res 2000;18(5):773–780.

    Article  CAS  PubMed  Google Scholar 

  70. Wakitani S, Goto T, Pineda SJ, et al. Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J Bone Joint Surg Am 1994;76(4):579–592.

    CAS  PubMed  Google Scholar 

  71. Gao J, Dennis JE, Solchaga LA, Goldberg VM, Caplan AI. Repair of osteochondral defect with tissue-engineered two-phase composite material of injectable calcium phosphate and hyaluronan sponge. Tissue Eng 2002;8(5):827–837.

    Article  CAS  PubMed  Google Scholar 

  72. Beredjiklian PK, Favata M, Cartmell JS, Flanagan CL, Crombleholme TM, Soslowsky LJ. Regenerative versus reparative healing in tendon: a study of biomechanical and histological properties in fetal sheep. Ann Biomed Eng 2003;31(10):1143–1152.

    Article  PubMed  Google Scholar 

  73. Sato M, Maeda M, Kurosawa H, Inoue Y, Yamauchi Y, Iwase H. Reconstruction of rabbit Achilles tendon with three bioabsorbable materials: histological and biomechanical studies. J Orthop Sci 2000;5(3):256–267.

    Article  CAS  PubMed  Google Scholar 

  74. Ouyang HW, Goh JC, Thambyah A, Teoh SH, Lee EH. Knitted poly-lactide-co-glycolide scaffold loaded with bone marrow stromal cells in repair and regeneration of rabbit Achilles tendon. Tissue Eng 2003;9(3):431–439.

    Article  CAS  PubMed  Google Scholar 

  75. Young RG, Butler DL, Weber W, Caplan AI, Gordon SL, Fink DJ. Use of mesenchymal stem cells in a collagen matrix for Achilles tendon repair. J Orthop Res 1998;16(4):406–413.

    Article  CAS  PubMed  Google Scholar 

  76. Awad HA, Butler DL, Boivin GP, et al. Autologous mesenchymal stem cell-mediated repair of tendon. Tissue Eng 1999;5(3):267–277.

    Article  CAS  PubMed  Google Scholar 

  77. Altman GH, Lu HH, Horan RL, et al. Advanced bioreactor with controlled application of multi-dimensional strain for tissue engineering. J Biomech Eng 2002;124(6):742–749.

    Article  PubMed  Google Scholar 

  78. Altman GH, Horan RL, Martin I, et al. Cell differentiation by mechanical stress. FASEB J 2002;16(2):270–272.

    CAS  PubMed  Google Scholar 

  79. Di Nicola M, Carlo-Stella C, Magni M, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 2002;99(10):3838–3843.

    Article  PubMed  Google Scholar 

  80. Krampera M, Glennie S, Dyson J, et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 2003;101(9):3722–3729.

    Article  CAS  PubMed  Google Scholar 

  81. Le Blanc K, Rasmusson I, Sundberg B, et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 2004;363(9419):1439–1441.

    Article  PubMed  Google Scholar 

  82. Frank M, Sayegh M. Immunomodulatory functions of mesenchymal stem cells. Lancet 2004;363:1411–1412.

    Article  PubMed  Google Scholar 

  83. Ishida T, Inaba M, Hisha H, et al. Requirement of donor-derived stromal cells in the bone marrow for successful allogeneic bone marrow transplantation. Complete prevention of recurrence of autoimmune diseases in MRL/MP-Ipr/Ipr mice by transplantation of bone marrow plus bones (stromal cells) from the same donor. J Immunol 1994;152(6):3119–3127.

    CAS  PubMed  Google Scholar 

  84. Lu D, Mahmood A, Wang L, Li Y, Lu M, Chopp M. Adult bone marrow stromal cells administered intravenously to rats after traumatic brain injury migrate into brain and improve neurological outcome. Neuroreport 2001;12(3):559–563.

    Article  CAS  PubMed  Google Scholar 

  85. Horwitz E, Prockop D, Fitzpatrick L, et al. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 1999;5(3):309–313.

    Article  CAS  PubMed  Google Scholar 

  86. Li Y, Hisha H, Inaba M, et al. Evidence for migration of donor bone marrow stromal cells into recipient thymus after bone marrow transplantation plus bone grafts: a role of stromal cells in positive selection. Exp Hematol 2000;28(8):950–960.

    Article  CAS  PubMed  Google Scholar 

  87. Li Q, Ashraf F, Rana T, et al. Long-term survival of allogeneic donor cell-derived corneal epithelium in limbal deficient rabbits. Curr Eye Res 2001;23(5):336–345.

    Article  CAS  PubMed  Google Scholar 

  88. Modo M, Rezaie P, Heuschling P, Patel S, Male D, Hodges H. Transplantation of neural stem cells in a rat model of stroke: assessment of short-term graft survival and acute host immunological response. Brain Res 2002;958(1):70–82.

    Article  CAS  PubMed  Google Scholar 

  89. Sugita S, Streilein J. Iris pigment epithelium expressing CD86 (B7-2) directly suppresses T cell activation in vitro via binding to cytotoxic T lymphocyte-associated antigen 4. J Exp Med 2003;198(1):161–171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag London Limited

About this chapter

Cite this chapter

Derubeis, A., Pennesi, G., Cancedda, R. (2006). Mesenchymal Stem Cells: Where Can You Find Them? How Can You Use Them?. In: Stem Cell and Gene-Based Therapy. Springer, London. https://doi.org/10.1007/1-84628-142-3_10

Download citation

  • DOI: https://doi.org/10.1007/1-84628-142-3_10

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-979-1

  • Online ISBN: 978-1-84628-142-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics