Skip to main content

Aspartic Proteases Used in Cheese Making

  • Chapter
Industrial Enzymes

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguilar, C.F., Cronin, N.B., Badasso, M., Dreyer, T., Newman, M.P., Cooper, J.B., Hoover, D.J., Wood, S.P., Johnson, M.,S. and Blundell, T. (1997) The three-dimensional structure at 2.4Å resolution of glycosylated proteinase A from the lysosome-like vacuole of Saccharomyces cerevisiae J. Mol. Biol. 267, 899–915.

    Article  PubMed  CAS  Google Scholar 

  • Aikawa, J., Park, Y.N., Sugiyama, M., Nishiyama, M., Horinouchi, S. and Beppu, T. (2001) Replacement of amino acid residues at subsites and their effects on the catalytic properties of Rhizomucor pusillus pepsin, an aspartic proteinase from Rhizomucor pusillus. J. Biochem. 129, 791–794.

    PubMed  CAS  Google Scholar 

  • Aikawa, J., Yamashita, T., Nishiyama, M., Horinouchi, S. and Beppu, T. (1990) Effects of glycosylation on the secretion and enzyme activity of Mucor rennin, an aspartic proteinase of Mucor pusillus, produced by recombinant yeast. J. Biol. Chem. 265, 13955–13959.

    PubMed  CAS  Google Scholar 

  • Andreeva, N. and Rumsh, L.D. (2001) Analysis of crystal structures of aspartic proteinases: On the role of amino acid residues adjacent to the catalytic site of pepsin-like enzymes. Protein Sci. 10, 2439–2450.

    Article  PubMed  CAS  Google Scholar 

  • Awad, S., Luthi-Peng, Q.Q. and Puhan, Z. (1999) Proteolytic activities of Suparen and Rennilase on buffalo, cow, and goat whole casein and beta-casein. J. Agric. Food Chem. 47, 3632–3639.

    Article  PubMed  CAS  Google Scholar 

  • Blundell, T.L., Jenkins J.A., Sewell, B.T., Pearl, L.H., Cooper, J. B., Tickle, I.J., Veerapandian, B. and Wood, S.P. (1990) X-ray analyses of aspartic proteinases. The three-dimensional structure at 2.1 Å resolution of endothiapepsin. J. Mol. Bio 941.

    Google Scholar 

  • Branner-Jorgensen, S., Inventor; Branner-Jorgensen, S., assignee. (1981 March 10) Thermal destabilization of microbial rennet. U.S. Patent 4,255,454.

    Google Scholar 

  • Branner-Jorgensen, S., Schneider, P. and Eigtved, P., inventors; Novo Industri A/S, assignee. (1982 November 2) Thermal destabilization of microbial rennet. U.S. Patent 4, 357, 357.

    Google Scholar 

  • Budtz, P. and Heldt-Hansen, H. P., inventors; Gist-brocades, B. V., assignee. (1998 September 1) Cheese making with recombinant aspartic protease. U.S. Patent 5, 800, 849.

    Google Scholar 

  • Castanheira, P., Samyn, B., Sergeant, K., Clemente, J.C., Dunn, B. M., Pires, E. Van Beeumen, J. and Faro., C. (2005) Activation, proteolytic processing, and peptide specificity of recombinant cardosin A. J. Biol. Chem. 280, 13047–13054

    Article  CAS  Google Scholar 

  • Chitpinitoyl, S. and Crabbe, M.J.C. (1998) Chymosin and aspartic proteinases. Food Chem. 61, 395–418.

    Article  Google Scholar 

  • Coates, L., Erskine, P.T., Crump, M.P., Wood, S.P. and Cooper, J.B. (2002) Five atomic resolution structures of endothiapepsin inhibitor complexes: Implications for the aspartic proteinase mechanism. J. Mol. Biol. 318, 1405–415.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, J.B., Khan, G., Taylor, G., Tickle, I.J. and Blundell, T. (1990) X-ray analysis of aspartic proteinases. II. Three-dimensional structure of the hexagonal crystal form of porcine pepsin at 2.3 Å resolution. J. Mol. Biol. 214, 199–222.

    Article  PubMed  CAS  Google Scholar 

  • Davies, D.R. (1990) The structure and function of the aspartic proteinases. Annu. Rev. Biophys. Biophys. Chem. 19, 189–215.

    Article  PubMed  CAS  Google Scholar 

  • Domingos, A., Cardoso, P.C., Xue, Z.T., Clemente, A., Brodelius, P.E. and Pais, M.S. (2000) Purification, cloning and autoproteolytic processing of an aspartic proteinase from Centaurea calcitrapa. Eur. J. Biochem. 267, 6824–6831.

    Article  PubMed  CAS  Google Scholar 

  • Dunn-Coleman, N.S., Bloebaum, P., Berka, R.M., Bodie, E., Robinson, N., Armstrong, G., Ward, M., Przetak, M., Carter, G.L., LaCost, R., Wilson, L.J., Kodama, H.K., Baliu, E.F., Bower, B., Lamsa, M. and Heinsohn, H. (1991) Commercial levels of chymosin production by Aspergillus. Biotechnol. 9, 976–891.

    Article  CAS  Google Scholar 

  • Elagamy, E.I. (2000) Physicochemical, molecular and immunological characterization of camel calf rennet: A comparison with buffalo rennet. J. Dairy Res. 67, 73–81.

    Article  PubMed  CAS  Google Scholar 

  • Egas, C., Lavoura, N., Resende, R., Brito, R.M.M., Pires, E., Pedroso de Lima, M.C. and Faro, C. (2000) The saposin-like domain of the plant aspartic proteinase precursor is a potent inducer of vesicle leakage. J. Biol. Chem. 49, 38190–38196.

    Article  Google Scholar 

  • Faro, C., Verissimo, P., Lin, Y., Tang, J. and Pires, E. (1995) Cardosin A and B, aspartic proteases from the flowers of cardoon. Adv. Exp. Med. Biol. 362, 373–377.

    PubMed  CAS  Google Scholar 

  • Foltmann, B. (1992) Chymosin: a short review on foetal and neonatal gastric proteases. Scand. J. Clin. Lab. Invest. Suppl. 210, 65–79.

    Article  PubMed  CAS  Google Scholar 

  • Foltmann, B., Barkholt, P., Kauffman, D. and Wybrandt, G. (1979) The primary structure of calf chymosin. J. Biol. Chem. 254, 8447–8451.

    PubMed  CAS  Google Scholar 

  • Foltmann, B., Pedersen, V.B., Jacobsen, H., Kauffman, D. and Wybrandt, G. (1977) The complete amino acid sequence of prochymosin. Proc. Natl. Acad. Sci. U S A. 74, 2321–2324.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Fox, P.F. and McSweeney, P.L.H. (1999) Rennets: their role in milk coagulation and cheese ripening. In Microbiology and Biochemistry of Cheese and Fermented Milk. Law, B.A. ed. Blackie Academic and Proffesional, London, pp. 1–49.

    Google Scholar 

  • Francky, A., Francky, B.M., Strukelj, B., Gruden, K., Ritonja, A., Krizaj, I., Kregar, I., Pain, R. H. and Pungercar, J. (2001) A basic residue at position 36p of the propeptide is not essential for the correct folding and subsequent autocatalytic activation of prochymosin. Eur. J. Biochem. 268, 2362–2368.

    Article  PubMed  CAS  Google Scholar 

  • Frazao, C. Bento, I., Costa J., Soares, C.M., Verìssimo, P., Faro, C., Pires, E., Cooper, J. and Larrondo, M.A. (1999) Crystal structure of cardosin A, a glycosilated and Arg-Gly-Asp-containing aspartic proteinase from the flowers of Cynara cardunculus L. J. Biol. Chem. 274, 27694–27701.

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto, Z., Fujii, Y., Kaneko, S., Kobayashi, H. and Mizuno, H. (2004) Crystal structure of aspartic proteinase from Irpex lacteus in complex with inhibitor pepstatin. J. Mol. Biol. 341, 1227–1235.

    Article  PubMed  CAS  Google Scholar 

  • Gilliland, G.L., Winborne, E.L., Nachman, J. and Wlodawer, A. (1990) The three-dimensional structure of recombinant bovine chymosin at 2.3 Å resolution. Proteins. 8, 82–101.

    Article  PubMed  CAS  Google Scholar 

  • Groves, M.R., Dhanaraj, V., Badasso, M., Nugent, P., Pitts, J.E., Hoover, D.J. and Blundell, T.L. (1998) A 2.3 Å resolution structure of chymosin complexed with a reduced bond inhibitor shows that the active site beta-hairpin flap is rearranged when compared with the native crystal structure. Protein Eng. 11, 833–840.

    Article  PubMed  CAS  Google Scholar 

  • Gustchina, E., Rumsh, L., Ginodman, L., Majer, P. and Andreeva, N. (1996) Post X-ray crystallographic studies of chymosin: the existence of two structural forms and the regulation of activity by the interaction with the histidine-proline cluster of kappa-casein. FEBS Lett. 379, 60–62.

    Article  PubMed  CAS  Google Scholar 

  • Harboe, M.K. and Budtz, P. (1999) The production, action and application of rennet and coagulants. In Tecnology of cheese making. Law, B. A. ed. Sheffield Academic Press, Sheffield, pp. 33–65.

    Google Scholar 

  • Harboe, M.K. and Kristensen, P.B., inventors; Chr. Hansen A/S, assignee. (2000 October 3) Microbially derived enzymes having enhanced milk clotting activity and method producing the same. US Patent 6, 127, 142.

    Google Scholar 

  • Hiramatsu, R., Aikawa, J., Horinouchi, S. and Beppu, T. (1989) Secretion by yeast of the zymogen form of Mucor rennin, an aspartic proteinase of Mucor pusillus, and its conversion to the mature form. J. Biol. Chem. 264, 16862–16866.

    PubMed  CAS  Google Scholar 

  • Houen, G., Madsen, M.T., Harlow, K.W., Lonblad, P. and Foltmann, B. (1996) The primary structure and enzymic properties of porcine prochymosin and chymosin. Int. J. Biochem. Cell Biol. 28, 667–675.

    Article  PubMed  CAS  Google Scholar 

  • Hong, L. and Tang, J. (2004) Flap position of free memapsin 2 (beta-secretase), a model for flap opening in aspartic protease catalysis. Biochem. 43, 4689–4695.

    Article  CAS  Google Scholar 

  • James, M.N.G. (2004) Catalytic pathway of aspartic peptidases. In Handbook of Proteolytic Enzymes. Barrett, A.J., Rawlings, N.D. and Woessner, J.F. eds. Elsevier, London, pp. 12–19.

    Google Scholar 

  • Jia, Z., Vandonselaar, M., Schneider, P. and Quail, J.W. (1995) Crystallization and preliminary X-ray structure solution of Rhizomucor miehei aspartic proteinase. Acta Crystallogr. D. 51, 243–244.

    Article  PubMed  CAS  Google Scholar 

  • Kageyama, T. (2002) Pepsinogens, progastricsins, and prochymosins: structure, function, evolution, and development. Cell Mol. Life Sci. 59, 288–306.

    Article  PubMed  CAS  Google Scholar 

  • Kappeler, S., Farah, Z., van den Brink, J.M., Rahbeck-Nielsen, H., Budtz, P., inventors; ( 2004 September 16) Method of producing non-bovine chymosin and use hereof. United States Patent Application 20040180410.

    Google Scholar 

  • Kim, S.Y., Gunasekaran, S. and Olson, N.F. (2004) Combined use of chymosin and protease from Cryphonectria parasitica for control of meltability and firmness of cheddar cheese. J. Dairy Sci. 87, 274–283.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi, H., Kusakabe, I. and Murakami, K. (1985) Milk-clotting enzyme from Irpex lacteus as a calf rennet substitute for Cheddar cheese manufacture. Agric. Biol. Chem. 49, 1605–1609.

    CAS  Google Scholar 

  • Marciniszyn, J. Jr., Hartsuck, J.A. and Tang, J. (1976) Mode of inhibition of acid proteases by pepstatin. J. Biol. Chem. 251, 7088–7094.

    PubMed  CAS  Google Scholar 

  • Mohanty, A.K., Mukhopadhyay, U.K., Grover, S. and Batish, V.K. (1999) Bovine chymosin: Production by rDNA technology and application in cheese manufacture. Biotechnol. Adv. 17, 205–217.

    Article  PubMed  CAS  Google Scholar 

  • Mohanty, A.K., Mukhopadhyay, U.K., Kaushik, J.K., Grover, S. and Batish, V.K. (2003) Isolation, purification and characterization of chymosin from riverine buffalo (Bubalos bubalis). J. Dairy Res. 70, 37–43.

    Article  PubMed  CAS  Google Scholar 

  • Newman, M., Safro, M., Frazao, C., Khan, G., Zdanov, A., Tickle, I.J., Blundell, T.L. and Andreeva, sN. (1991) X-ray analyses of aspartic proteinases. IV. Structure and refinement at 2.2 Å resolution of bovine chymosin. J. Mol. Biol. 221, 1295–1309.

    PubMed  CAS  Google Scholar 

  • Newman, M., Watson, F., Roychowdhury, P., Jones, H., Badasso, M., Cleasby, A., Wood, S.P., Tickle, I.J. and Blundell, T.L. (1993) X-ray analyses of aspartic proteinases. V. Structure and refinement at 2.0 A resolution of the aspartic proteinase from Mucor pusillus. J. Mol. Biol. 230, 260–283.

    Article  PubMed  CAS  Google Scholar 

  • Park, Y.N., Aikawa, J., Nishiyama, M., Horinouchi, S. and Beppu, T. (1996) Involvement of a residue at position 75 in the catalytic mechanism of a fungal aspartic proteinase, Rhizomucor pusillus pepsin. Replacement of tyrosine 75 on the flap by asparagines enhances catalytic efficiency. Protein Eng. 9, 869–875.

    Article  PubMed  CAS  Google Scholar 

  • Pedersen, V.B., Christensen, K.A. and Foltmann, B. (1979) Investigations on the activation of bovine prochymosin. Eur. J. Biochem. 94, 573–80.

    Article  PubMed  CAS  Google Scholar 

  • Pungercar, J., Strukelj, B., Gubensek, F., Turk, V. and Kregar, I. (1990) Complete primary structure of lamb preprochymosin deduced from cDNA . Nucleic Acids Res. 18, 4602.

    Article  PubMed  CAS  Google Scholar 

  • Ramalho-Santos, M., Pissarra, J.,Verìssimo, P., Pereira, S., Salema, R., Pires, E. and Faro, C.J. (1997) Cardosin A, an abundant aspartic proteinase, accumulates in protein storage vacuoles in the stigmatic papillae of Cynara cardunculus L. Planta. 203, 204–212.

    Article  PubMed  CAS  Google Scholar 

  • Ramalho-Santos, M., Verìssimo, P., Cortes, L., Samyn, B. Van Beeumen, J., Pires, E. and Faro, C. (1998) Identification and proteolytic processing of procardosin A. Eur. J. Biochem. 255, 133–138.

    Article  PubMed  CAS  Google Scholar 

  • Rawlings, N.D., Tolle, D.P. and Barret, A.J. (2004) MEROPS: The peptidase database. Nucleic Acid Res. 32 Database issue, D160-D164. http://www.merops.sanger.ac.uk/

    Article  CAS  Google Scholar 

  • Rickert, W.S. and McBride-Warren, P.A. (1974) Structural and functional determinants of Mucor miehei protease. IV. Nitration and spectrophotometric titration of tyrosine residues. Biochim. Biophys. Acta. 371, 368–378.

    CAS  Google Scholar 

  • Rogelj, I., Perko, B., Francky, A., Penca, V. and Pungercar, J. (2001) Recombinant lamb chymosin as an alternative coagulating enzyme in cheese production. J. Dairy Sci. 84, 1020–1026.

    Article  PubMed  CAS  Google Scholar 

  • Roserio, L.B., Barbosa, M., Ames, J.M. and Wilbey R.A. (2003) Cheesemaking with vegetable coagulants-the use of Cynara L. for the production of ovine milk cheeses. Int. J. Dairy Tech. 56, 76–85.

    Article  Google Scholar 

  • Sidrach, L., Garcìa-Cànovas, F., Tudela, J. and Rodrìguez-Lòpez, J. N. (2004) Purification of cynarases from artichoke (Cynara scolymus L.): enzymatic properties of cynarase A. Phytochem. 66, 41–49.

    Article  CAS  Google Scholar 

  • Simöes, I. and Faro, C. (2004) Structure and function of plant aspartic proteinases. Eur. J. Biochem. 271, 2067–2075.

    Article  PubMed  CAS  Google Scholar 

  • Soares Pais, M.S., Calixto, F.C. and Planta, R.J. inventors; Instituto de Ciencia Aplicada e Technologia, assignee. (2000 December 14) Production by yeast of aspartic proteinases from plant origin. International Patent WO 00/75283 A1.

    Google Scholar 

  • Tang, J. (2004) Pepsin A. In Handbook of Proteolytic Enzymes. Barrett, A.J., Rawlings, N.D. and Woessner, J.F. eds. Elsevier, London, pp. 19–28.

    Google Scholar 

  • Tonouchi, N., Shoun, H., Uozumi, T. and Beppu, T. (1986) Cloning and sequencing of a gene for Mucor rennin, an aspartate protease from Mucor pusillus. Nucleic Acids Res. 14, 7557–7568.

    Article  PubMed  CAS  Google Scholar 

  • Vega-Hernàndez, M.C., Gòmez-Coello, A., Villar, J. and Claverie-Martìn, F. (2004) Molecular cloning and expression in yeast of caprine prochymosin. J. Biotechnol. 114, 69–79.

    Article  PubMed  CAS  Google Scholar 

  • Vieira, M., Pissarr, J., Verìssimo, P., Castanheira, P., Costa, Y., Pires, E. and Faro, C. (2001) Molecular cloning and characterization of cDNA encoding cardosin B, an aspartic proteinase accumulating extracellularly in the transmitting tissue of Cynara cardunculusL. Plant Mol. Biol. 45, 529–539.

    Article  PubMed  CAS  Google Scholar 

  • White, P.C., Cordeiro, M.C., Arnold, D., Brodelius, P. and Kay, J. (1999) Processing, activity, and inhibition of recombinant cyprosin, an aspartic proteinase from cardoon (Cynara cardunculus). J. Biol. Chem. 274, 16685–16693.

    Article  PubMed  CAS  Google Scholar 

  • Yamashita, T., Higashi, S., Higashi, T., Machida, H., Iwasaki, S., Nishiyama, M. and Beppu, T. (1994) Mutation of a fungal aspartic proteinase, Mucor pusillus rennin, to decrease thermostability for use as a milk coagulant. J Biotechnol. 32, 17–28.

    Article  PubMed  CAS  Google Scholar 

  • Yang, J. and Quail, J.W. (1999) Structure of the Rhizomucor miehei aspartic proteinase complexed with the inhibitor pepstatin A at 2.7 Å resolution. Acta Crystallogr. D. Biol. Crystallogr. 55, 625–630.

    Article  CAS  Google Scholar 

  • Yang, J., Teplyakov, A. and Quail, J.W. (1997) Crystal structure of the aspartic proteinase from Rhizomucor miehei at 2.15- Å resolution. J. Mol. Biol. 268, 449–459.

    Article  PubMed  CAS  Google Scholar 

  • Yun, J.J., Kiely, L.J., Kindstedt, P.S. and Barbano, D.M. (1993) Mozzarella cheese: impact of coagulant type on functional properties. J. Dairy Sci. 76, 3657–3663.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Claverie-MartÌn, F., Vega-Hernàndez, M.C. (2007). Aspartic Proteases Used in Cheese Making. In: Polaina, J., MacCabe, A.P. (eds) Industrial Enzymes. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5377-0_13

Download citation

Publish with us

Policies and ethics