Skip to main content

Part of the book series: Topics in Geobiology ((TGBI,volume 27))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aitken, J. D., 1981, Stratigraphy and sedimentology of the Upper Proterozoic Little Dal Group, Mackenzie Mountains, Northwest Territories, in: Proterozoic Basins of Canada (F. H. A. Campbell, ed.),Geological Survey of Canada, Paper, 81–10, pp: 47–71.

    Google Scholar 

  • Aitken, J. D., 1991a, The Ice Brook Formation and post-Rapitan, Late Proterozoic glaciation, Mackenzie Mountains, Northwest Territories, Geol. Surv. Can. Bull. 404: 1–43.

    Google Scholar 

  • Aitken, J. D., 1991b, Two Late Proterozoic glaciations, Mackenzie Mountains, northwestern Canada, Geology 19: 445–448.

    Google Scholar 

  • Allen, P. A., Bowring, S. A., Leather, J., Brasier, M. D., Cozzi, A., Grotzinger, J. P., McCarron, G., and Amther, J. E., 2002, Chronology of Neoproterozoic glaciations: New nsigns from Oman, The 16 th Int. Sedimentol. Cong. Abstr. Vol., Johannesburg, pp. 7–8.

    Google Scholar 

  • Allen, P. A.., and Leather, J., 2006, Post-marinoan marine siliciclastic sedimentation: The Masirah Bay Formation, Neoproterozoic Huqf Supergroup of Oman, Precambiran Res. 144: 167–198.

    Google Scholar 

  • Allen, P. A., Bowring, S., Leather, J. J., Brasier, M., Cozzi, A., Grotzinger, J. P., McCarron, G., and Amthor, J. E., 2002, Chronology of Neoproterozoic glacials: new insights from Oman, The 16th Int. Sedimentol. Cong. Abstr. Vol., Johannesburg, pp 7–8.

    Google Scholar 

  • Allen, P. A., Leather, J., and Brasier, M. D., 2005, The Neoproterozoic Fiq glaciation and its aftermath, Huqf Supergroup of Oman, Bas. Res. 160: 507–534.

    Google Scholar 

  • Allen, P. A., and Hoffman, P. F., 2005, Extreme winds and waves in the aftermath of a Neoproterozoic glaciation, Nature 433: 123–127.

    Google Scholar 

  • Amthor, J. E., Grotzinger, J. P., Schröder, S., Bowring, S. A., Ramezani, J., Martin, M. W., and Matter, A., 2003, Extinction of Cloudina and Namacalathus at the Precambrian–Cambrian boundary in Oman, Geology 31: 431–434.

    Google Scholar 

  • Asmerom, Y., Jacobsen, S., Knoll, A. H., Butterfield, N. J., and Swett, K., 1991, Strontium isotopic variations of Neoproterozoic seawater: Implications for crustal evolution, Geochim. Cosmochim. Acta 55:2883–2894.

    Google Scholar 

  • Barfod, G. H., Albarede, F., Knoll, A. H., Xiao, S., Télouk, P., Frei, R., and Baker, J., 2002, New Lu–Hf and Pb–Pb age consraints on the earliest animal fossils, Earth Planet. Sci. Lett. 201: 203–212.

    Google Scholar 

  • Bartley, J. K., and Kah, L. C., 2004, Marine carbon reservoir, Corg–Ccarb coupling, and the evolution of the Proterozoic carbon cycle, Geology 32: 129–133.

    Google Scholar 

  • Bartley, J. K., Semikhatov, M. A., Kaufman, A. J., Knoll, A. H., Pope, M. C., and Jacobsen, S. B., 2001, Global events across the Mesoproterozoic–Neoproterozoic boundary: C and Sr isotopic evidence from Siberia, Precambrian Res. 111: 165–202.

    Google Scholar 

  • Bingen, B., Griffin, W. L., Torsvik, T. H., and Saeed, A., 2005, Timing of late Neoproterozoic glaciation on Baltica constrained by detrital geochronology in the Hedmark Group, southeast Norway, Terra Nova 17: 593–596.

    Google Scholar 

  • Bodiselitsch, B., Koeberl, C., Master, S., and Reimold, W. U., 2005, Estimating duration and intensity of Neoproterozoic snowball glaciations from Ir anomalies, Science 308: 239–242.

    Google Scholar 

  • Bowring, S., Myrow, P., Landing, E., Ramezani, J., and Grotzinger, J., 2003, Geochronological constraints on terminal Proterozoic events and the rise of the Metazoans, Geophys. Res. Abstr. 50: 13219.

    Google Scholar 

  • Bowring, S. A., Grotzinger, J. P., Isachsen, C. E., Knoll, A. H., Pelechaty, S., and Kolosov, P., 1993, Calibrating rates of Early Cambrian evolution, Science 261: 1293–1298.

    Google Scholar 

  • Brasier, M., McCarron, G., Tucker, R., Leather, J., Allen, P., and Shields, G., 2000, New U–Pb zircon dates for the Neoproterozoic Ghubrah glaciation and for the top of the Huqf Supergroup, Oman, Geology 28: 175–178.

    Google Scholar 

  • Brasier, M. D., and Lindsay, J. F., 1995, A billion years of environmental stability and the emergence of eukaryotes: New data from northern Australia, Geology 26: 555–558.

    Google Scholar 

  • Buick, R., Des Marais, D. J., and Knoll, A. H., 1995, Stable isotopic composition of carbonates from the Mesoproterozoic Bangemall Group, northwestern Australia, Chem. Geol. 123: 153–171.

    Google Scholar 

  • Burns, S. J., and Matter, A., 1993, Carbon isotopic record of the latest Proterozoic from Oman, Ecl. Geol. Helv. 86: 595–607.

    Google Scholar 

  • Caldeira, K., and Kasting, J. F., 1992, Susceptibility of the early Earth to irreversible glaciation caused by carbon dioxide clouds, Nature 359: 226–228.

    Google Scholar 

  • Calver, C. R., 2000, Isotope stratigraphy of the Ediacaran (Neoproterozoic III) of the Adelaide rift complex, Australia, and the overprint of water column stratification, Precambrian Res. 100: 121–150.

    Google Scholar 

  • Calver, C. R., Black, L. P., Everard, J. L., and Seymour, D. B., 2004, U–Pb zircon age constraints on late Neoproterozoic glaciation in Tasmania, Geology 32: 893–896.

    Google Scholar 

  • Calver, C. R., and Lindsay, J. F., 1998, Ediacaran sequence and isotope stratigraphy of the Officer Basin, South Australia, Australia J. Earth Sci. 45: 513–532.

    Google Scholar 

  • Calver, C. R., and Walter, M. R., 2000, The late Neoproterozoic Grassy Group of King Island, Tasmania: correlation and palaeogeographic significance, Precambrian Res. 100: 299–312.

    Google Scholar 

  • Chen, D., Dong, W., Zhu, B., and Chen, X. P., 2004, Pb-Pb ages of Neoproterozoic Doushantuo phosphorites in South China: Constraints on early metazoan evolution and glaciation events, Precambrian Res. 132: 123-132.

    Google Scholar 

  • Chen, J. Y., Bottjer, D. J., Oliveri, P., Dornbos, S. Q., Gao, F., Ruffins, S., Chi, H., Li, C. W., and Davidson, E. H., 2004, Small bilaterian fossils from 40 to 55 million years before the Cambrian, Science 305: 218–222.

    Google Scholar 

  • Christie-Blick, N., 1997, Neoproterozoic sedimentation and tectonics in west-central Utah, Proterozoic to Recent Stratigraphy, Tectonics and Volcanology, Utah, Nevada, Southern Idaho and Central Mexico: Brigham Young University Geology Studies 42 , Part I, pp. 1–30.

    Google Scholar 

  • Christie-Blick, N., Sohl, L. E., and Kennedy, M. J., 1999, Considering a Neoproterozoic snowball Earth, Science, 284: online.

    Google Scholar 

  • Clapham, M. E., and Corsetti, F. A., 2005, Deep valley incision in the terminal Neoproterozoic (Ediacaran) Johnnie Formation, eastern California, USA: Tectonically or glacially driven? Precambrian Res. 141: 154–164.

    Google Scholar 

  • Condon, D., Zhu, M., Bowring, S., Jin, Y., Wang, W., and Yang, A., 2005, From the Marinoan glaciation to the oldest bilaterians: U–Pb ages from the Doushantou Formation, China, Science 308: 95–98.

    Google Scholar 

  • Condon, D. J., and Prave, A. R., 2000, Two from Donegal: Neoproterozoic glacial episodes on the northeast margin of Laurentia, Geology 28: 951–954.

    Google Scholar 

  • Corsetti, F. A., and Kaufman, A. J., 2003, Statigraphic investigations of carbon isotope anomalies and Neoproterozoic ice ages in Death Valley, California, Geol. Soc. Amer. Bull. 115: 916–932.

    Google Scholar 

  • Cozzi, A., Allen, P. A., and Grotzinger, J. P., 2004, Understanding carbonate ramp dynamics using δ 13C profiles: examples from the Neoproterozoic Buah Formation of Oman, Terra Nova 16: 62–67.

    Google Scholar 

  • Crittenden, M. D. Jr., Schaeffer, F. E., Trimble, D. E., and Woodward, L. A., 1971, Evidence for two pulses of glaciation during the Late Proterozoic in northern Utah and southern Idaho, Geol. Soc. Amer. Bull. 82: 581–602.

    Google Scholar 

  • Dempster, T. J., Rogers, G., Tanner, P. W. G., Bluck, B. J., Muir, R. J., Redwood, S. D., Ireland, T. R., and Patterson, B. A., 2002, Timing of deposition, orogenesis and glaciation within the Dalradian rocks of Scotland: constraints from U–Pb zircon ages, J. Geol. Soc. London 159: 83–84.

    Google Scholar 

  • Donnadieu, Y., Fluteau, F., Ramstein, G., Ritz, C., and Besse, J., 2003, Is there a conflict between Neoproterozoic glacial deposits and the snowball Earth interpretation: an improved understanding with numerical modeling, Earth Planet. Sci. Lett. 208: 101–112.

    Google Scholar 

  • Donnadieu, Y., Goddéris, Y., Ramstein, G., Nédelec, A., and Meert, J., 2004, A ’snowball earth’ climate triggered by continental break-up through changes in runoff, Nature 428: 303–306.

    Google Scholar 

  • Dunn, P. R., Thomson, B. P., and Rankama, K., 1971, Late Pre-Cambrian glaciation in Australia as a stratigraphic boundary, Nature 231: 498–502.

    Google Scholar 

  • Elles, G. L., 1934, The Loch na Cille Boulder Bed and its place in the Highland Succession, Quart. J. Geol. Soc. 91: 111–147.

    Google Scholar 

  • Evans, D. A. D., 2000, Stratigraphic, geochronological, and paleomagnetic constraints upon the Neoproterozoic climatic paradoxes, Amer. J. Sci. 300: 347–443.

    Google Scholar 

  • Fairchild, I. J., Spiro, B., Herrington, P. M., and Song, T., 2000, Controls on Sr and C isotope compositions of Neoproterozoic Sr-rich limestones of East Greenland and North China, in: Carbonate Sedimentation and Diagenesis in an Evolving Precambrian World (J. P. Grotzinger and N. P. James, eds.), SEPM Special Publications 67, Tulsa, pp. 297–313.

    Google Scholar 

  • Fairchild, I. J., and Hambrey, M. B., 1995, Vendian basin evolution in East Greenland and NE Svalbard, Precambrian Res. 73: 217–333.

    Google Scholar 

  • Fanning, C. M., and Link, P. K., 2004, U–Pb SHRIMP ages of Neoproterozoic (Sturtian) glaciogenic Pocatello Formation, southeastern Idaho, Geology 32: 881–884.

    Google Scholar 

  • Fanning, C. M., Ludwig, K. R., Forbes, B. G., and Preiss, W. V., 1986, Single and multiple grain U–Pb zircon analyses for the Early Adelaidean Rook Tuff, Willouran Ranges, South Australia, Abst. Geol. Soc. Australia 15: 71–72.

    Google Scholar 

  • Farmer, J., Vidal, G., Moczydlowskia, M., Strauss, H., Ahlberg, P., and Siedlecka, A., 1992, Ediacaran fossils from the Innerelv Member (late Proterozoic) of the Tanafjorden area, northeastern Finnmark, Geol. Mag. 129: 181–195.

    Google Scholar 

  • Frimmel, H. W., Klötzi, U. S., and Siegfried, P. R., 1996, New Pb–Pb single zircon age constraints on the timing of Neoproterozoic glaciation and continental break-up in Namibia, J. Geol. 104: 459–469.

    Google Scholar 

  • Gehling, J. G., Narbonne, G. M., and Anderson, M. M., 2000, The first named Ediacaran body fossil, Aspidellaterranovica, Palaeontology 43: 427–456.

    Google Scholar 

  • Gorin, G. E., Racz, L. G., and Walter, M. R., 1982, Late Precambrian–Cambrian sediments of Huqf Group, Sultanate of Oman, Amer. Assoc. Petrol. Geol. Bull. 66: 2609–2627.

    Google Scholar 

  • Goscombe, B., Hand, M., Gray, D., and Mawby, J., 2003, The metamorphic architecture of a transpressive orogen: the Kaoko Belt, Namibia, J. Pet. 44: 679–711.

    Google Scholar 

  • Gostin, V. A., Haines, P. W., Jenkins, R. J. F., and Compston, W., 1986, Impact ejecta horizon within late Precambrian shales, Adelaide geosyncline, South Australia, Science 233: 542–544.

    Google Scholar 

  • Grey, K., and Corkeron, M., 1998, Late Neoproterozoic stromatolites in glacigenic successions of the Kimberly region, Western Australia: evidence for a younger Marinoan glaciation, Precambrian Res. 92: 65–87.

    Google Scholar 

  • Grey, K., Walter, M. R., and Calver, C. R., 2003, Neoproterozoic biotic diversification: Snowball Earth or aftermath of the Acraman impact, Geology 31: 459–462.

    Google Scholar 

  • Grotzinger, J. P., Bowring, S. A., Saylor, B. Z., and Kaufman, A. J., 1995, Biostratigraphic and geochronologic constraints on early animal evolution, Science 270: 598–604.

    Google Scholar 

  • Halverson, G. P., Dudas, F. Ö., Maloof, A. C., and Bowring, S. A., in review. Evolution of the 87Sr/86Sr composition of Neoproterozoic seawater. Palaeogeogr. Palaeoclimatol. Palaeoecol.

    Google Scholar 

  • Halverson, G. P., Hoffman, P. F., and Schrag, D. P., 2002, A major perturbation of the carbon cycle before the Ghaub glaciation (Neoproterozoic) in Namibia: prelude to snowball Earth? Geochem., Geophys., Geosys. 3: 10.1029/2001GC000244.

    Google Scholar 

  • Halverson, G. P., Hoffman, P. F., Schrag, D. P., Maloof, A. C., and Rice, A. H., 2005, Towards a Neoproterozoic composite carbon isotope record, Geol. Soc. Amer. Bull. 117: 1181–1207.

    Google Scholar 

  • Halverson, G. P., Maloof, A. C., and Hoffman, P. F., 2004, The Marinoan glaciation (Neoproterozoic) in northeast Svalbard, Bas. Res. 16: 297–324.

    Google Scholar 

  • Halverson, G. P., Maloof, A. C., Schrag, D. P., Dudas, F. Ö., and Hurtgen, M., in press, Stratigraphy and geochemistry of a ca 800 Ma negative carbon isotope stage in northeastern Svalbard, Chem. Geol.

    Google Scholar 

  • Harlan, S. S., Heaman, L., LeCheminant, A. N., and Premo, W. R., 2003, Gunbarrel mafic magmatic event: a key 780 Ma time marker for Rodinia plate reconstructions, Geology 31: 1053–1056.

    Google Scholar 

  • Hill, A. C., Arouri, K., Gorjan, P., and Walter, M. R., 2000, Geochemistry of marine and nonmarine environments of a Neoproterozoic cratonic carbonate/evaporite: the Bitter Springs Formation, central Australia, in: Carbonate Sedimentation and Diagenesis in an Evolving Precambrian World (J. P. Grotzinger and N. P. James, eds.), SEPM Special Publications 67, Tulsa, pp. 327–344.

    Google Scholar 

  • Hoffman, P. F., 1991, Did the breakout of Laurentia turn Gondwana inside out? Science 252: 1409–1412.

    Google Scholar 

  • Hoffman, P. F., 2000, Comment: Vreeland Diamictites—Neoproterozoic glaciogenic slope deposits, Rocky Mountains, northeast British Columbia, Bull. Can. Pet. Geol. 48: 360–363.

    Google Scholar 

  • Hoffman, P. F., and Halverson, G. P., in press, Otavi Group of the northern platform and the northern margin zone, in: Handbook on the Geology of Namibia (R. McG. Miller, ed.), Geological Survey of Namibia, Windhoek.

    Google Scholar 

  • Hoffman, P. F., Hawkins, D. P., Isachsen, C. E., and Bowring, S. A., 1996, Precise U–Pb zircon ages for early Damaran magmatism in the Summas Mountains and Welwitschia Inlier, northern Damara belt, Namibia, Com. Geol. Surv. Namibia 11: 47–52.

    Google Scholar 

  • Hoffman, P. F., Kaufman, A. J., and Halverson, G. P., 1998a, Comings and goings of global glaciations on a Neoproterozoic tropical platform in Namibia, GSA Today 8: 1–9.

    Google Scholar 

  • Hoffman, P. F., Kaufman, A. J., Halverson, G. P., and Schrag, D. P., 1998b, A Neoproterozoic snowball Earth, Science 281: 1342–1346.

    Google Scholar 

  • Hoffman, P. F., and Schrag, D. P., 2002, The snowball Earth hypothesis: testing the limits of global change, Terra Nova 14: 129–155.

    Google Scholar 

  • Hoffmann, K., 1989, New aspects of lithostratigraphic subdivision and correlation of late Proterozoic to early Cambrian rock of the southern Damara Belt and their correlation with the central and northern Damara Belt and Gariep Belt, Com. Geol. Surv. Namibia 5: 59–67.

    Google Scholar 

  • Hoffmann, K. H., Condon, D. J., Bowring, S. A., and Crowley, J. L., 2004, A U–Pb zircon date from the Neoproterozoic Ghaub Formation, Namibia: Constraints on Marinoan glaciation, Geology 32: 817–820.

    Google Scholar 

  • Hoffmann, K. H., and Prave, A. R., 1996, A preliminary note on a revised subdivision and regional correlation of the Otavi Group based on glaciogenic diamictites and associated cap dolostones, Com. Geol. Surv. Namibia 11: 81–86.

    Google Scholar 

  • Hofmann, H. J., Narbonne, G. M., and Aitken, J. D., 1990, Ediacaran remains from intertillite beds in northwestern Canada, Geology 29: 1091–1094.

    Google Scholar 

  • Hurtgen, M. T., Halverson, G. P., Arthur, M. A., and Hoffman, P. F., in press, Sulfur cycing in the aftermath of a 635-ma snowball glaciation: Evidence for a syn-glacial sulfidic deep ocean, Earth Planet. Sci. Lett.

    Google Scholar 

  • Ikeda, T., and Tajika, E., 1999, A sudy of the energy balance climate model with CO-dependent outgoing radiation: implications for the glaciation during the Cenozoic, Geophys. Res. Lett. 26: 349–352.

    Google Scholar 

  • James, N. P., Narbonne, G. M., Dalrymple, R. W., and Kyser, T. K., 2005, Glendonites in Neoproterozoic low-latitude, interglacial, sedimentary rocks, northwest Canada: Insights ino the Cryogenian ocean and Precambrian cold-water carbonates, Geology 33: 9–12.

    Google Scholar 

  • Jefferson, C. W., and Parrish, R. R., 1989, Late Proterozoic stratigraphy, U/Pb zircon ages and rift tectonics, Mackenzie Mountains, northwestern Canada, Can. J. Earth Sci. 26: 1784–1801.

    Google Scholar 

  • Jefferson, C. W., and Ruelle, J. C. L., 1986, The Late Proterozoic Redstone Copper Belt, Mackenzie Mountains, Northwest Territories, in: Mineral Deposits of Northern Cordillera (J. A. Morin, ed.), Special Volume 37,The Canadian Institute of Mining and Metallurgy, pp. 154–168.

    Google Scholar 

  • Jiang, G., Sohl, L. E., and Christie-Blick, N., 2003, Neoproteroozic stratigraphic comparison of the Lesser Himalaya (India) and Yangtze block (south China): Paleogeographic implications, Geology 31: 917–920.

    Google Scholar 

  • Kaufman, A. J., 2005, The calibration of Ediacaran time, Science 308: 59–60.

    Google Scholar 

  • Kaufman, A. J., and Hebert, C. L., 2003, Stratigraphic and radiometric constraints on rift-related volcanism, terminal Neoproterozoic glaciation, and animal evolution, Geol. Soc. Amer. Abstr. Progr. 356: 516.

    Google Scholar 

  • Kaufman, A. J., and Knoll, A. H., 1995, Neoproterozoic variations in the C-isotopic composition of seawater, Precambrian Res. 73: 27–49.

    Google Scholar 

  • Kaufman, A. J., Knoll, A. H., and Narbonne, G. M., 1997, Isotopes, ice ages, and terminal Proterozoic Earth history, Proc. Nat. Acad. Sci. USA 95: 6600–6605.

    Google Scholar 

  • Kendall, B. S., and Creaser, R. A., 2004, Re–Os depositional age of Neoproterozoic Aralka Formation (Amadeus basin, Australia) revisited, Geol. Soc. Amer. Abstr. Progr. 36: 459.

    Google Scholar 

  • Kendall, B. S., Creaser, R. A. Ross, G., and Selby, D., 2004. Constraints on the timing of Marinoan “snowball Earth” glaciation by 187Re–187Os dating of a Neoproterozoic, post-glacial black shale in western Canada, Earth Plan. Sci. Lett. 222: 729–740.

    Google Scholar 

  • Kendall, B. S., Creaser, R. A., and Selby, D., 2005, Re–Os depositional age of Neoproterozoic post-glacial black shales in Australia: evidence for diachronous Neoproterozoic glaciations, Geol. Soc. Amer. Abstr. Progr. 37: 42.

    Google Scholar 

  • Kennedy, M. J., Runnegar, B., Prave, A. R., Hoffman, K. H., and Arthur, M., 1998, Two or four Neoproterozoic glaciations? Geology 26: 1059–1063.

    Google Scholar 

  • Key, R. M., Liyungu, A. K., Njamu, F. M., Somwe, V., Banda, J., Mosley, P. N., and Armstrong, R. A., 2001, The western arm of the Lufilian Arc in NW Zambia and its potential for copper mineralization, J. Afr. Earth Sci. 33: 503–528.

    Google Scholar 

  • Kilner, B., MacNiocaill, C., and Brasier, M., 2005, Low-latitude glaciation in the Neoproterozoic of Oman, Geology 33: 413–416.

    Google Scholar 

  • Kirschvink, J. L., 1992, Late Proterozoic low-latitude glaciation: The snowball Earth, in: The Proterozoic Biosphere (J. W. Schopf and C. Klein, eds.), Cambridge University Press, Cambridge, pp 51–52.

    Google Scholar 

  • Knoll, A. H., 1994, Proterozoic and Early Cambrian protists: Evidence for accelerating evolutionary tempo, Proc. Nat. Acad. Sci. USA 91: 6743-6750.

    Google Scholar 

  • Knoll, A. H., 2000, Learning to tell Neoproterozoic time, Precambrian Res., 100: 3–20.

    Google Scholar 

  • Knoll, A. H., Grotzinger, J. P., Kaufman, A. J., and Kolosov, P., 1995, Integrated approaches to terminal Proterozoic stratigraphy: An example froom the Olenek Uplift, northeastern Siberia, Precambrian Res. 73: 251–270.

    Google Scholar 

  • Knoll, A. H., Hayes, J. M., Kaufman, A. J., Swett, K., and Lambert, I. B., 1986, Secular variation in carbon isotope ratios from Upper Proterozoic successions of Svalbard and east Greenland, Nature 321: 832–837.

    Google Scholar 

  • Knoll, A. H., Swett, K., 1990, Carbonate deposition during the late Proterozoic era: an example from Spitsbergen. Am. J. Sci. 290A:104–132.

    Google Scholar 

  • Knoll, A. H., and Walter, M. R., 1992, Latest Proterozoic stratigraphy and Earth history, Nature 356: 673–677.

    Google Scholar 

  • Knoll, A. H., Walter, M. R., and Christie-Blick, N., 2004, A new period for the geological time scale, Nature 305: 621–622.

    Google Scholar 

  • Knoll, A. H., Walter, M. R., Narbonne, G. M., and Christie-Blick, N., 2006, The Ediacaran Period: a new addition to the geologic time scale, Lethaia 39: 13-30.

    Google Scholar 

  • Kuznetsov, A. B., Gorkhov, I. M., Semikhatov, M. A., Melnikov, N. N., and Kozlov, V. I., 1997, Strontium isotopic composition in the limestone of the Inzer Formation, Upper Riphean type sections, Southern Urals, Transact. Russ. Acad. Sci. (Earth Sci. Sect.) 353: 319–324.

    Google Scholar 

  • Leather, J., Allen, P. A., Brasier, M. D., and Cozzi, A., 2002, Neoproterozoic snowball Earth under scrutiny: Evidence from the Fiq glaciation of Oman, Geology 30: 891–894.

    Google Scholar 

  • Le Guerroué, E., Allen, P. A., Cozzi, A., Etienne, J. L., and Fanning, C. M., 2006, 50 Myr recovery from the largest negative δ 13C excursion in the Ediacaran ocean, Terra Nova 18: 147–153.

    Google Scholar 

  • Le Guerroué, E., Allen, P. A., Cozzi, A., 2005, Two distinct glacial successions in the Neoproterozoic of Oman. GeoArabia 10: 17–34.

    Google Scholar 

  • Levy, M., Christie-Blick, N., and Link, P. K., 1994, Neoproterozoic incised valleys of eastsern Great Basin, Utah and Idaho: fluvial response to changes in depositional base level, in:Incised-valley Systems: Origin and Sedimentary Sequences(R. W. Dalrymple, R. Boyd and B. A. Zaitlin, eds.),SEPM Special Publication No. 51, Tulsa pp. 369–382,

    Google Scholar 

  • Li, Z. X., and Powell, C. McA., 2001, An outline of the palaeogeographic evolution of the Australasian region since the beginning of the Neoproterozoic, Earth Sci. Rev. 53: 237–277.

    Google Scholar 

  • Lorentz, N. J., Coresetti, F. A., and Link, P. K., 2004, Seafloor precipitates and C-isotope stratigraphy from the Neoproterozoic Scout Mountain Member of the Pocatello Formation, southeast Idaho: implications for Neoproterozoic Earth system behavior, Precambrian Res. 130: 57–70.

    Google Scholar 

  • Lund, K. L., Aleinikoff, J. N., Evans, K. V., and Fanning, C. M., 2003, SHRIMP U–Pb geochronology of Neoproterozoic Windermere Supergroup, central Idaho: Implications for rifting of western Laurentia and synchroneity of Sturtian glacial deposits, Geol. Soc. Amer. Bull. 115: 349–372.

    Google Scholar 

  • Maloof, A. C., Halverson, G. P., Kirschvink, J. L., Weiss, B., Schrag, D. P., and Hoffman, P. F., in press, Combined paleomagnetic, isotopic and stratigraphic evidence for true polar wander from the Neoproterozoic Akademikerbreen Group, Svalbard, Geol. Soc. Amer. Bull.

    Google Scholar 

  • Martin, M. W., Grazhdankin, D. V., Bowring, S. A., Evans, D. A. D., Fendonkin, M. A., and Kirschvink, J. L., 2000, Age of Neoproterozoic bilaterian boday and trace fossils, White Sea, Russia: implications for metazoan evolution, Science 288: 841–845.

    Google Scholar 

  • Master, S., Rainaud, C., Armstrong, R. A., Phillips, D., and Robb, L. J., 2005, Provenance ages of the Neoproterozoic Katanga Supergroup (Central African Copperbelt), with implications for basin evolution, J. Afr. Earth Sci. 42: 41–60.

    Google Scholar 

  • McKirdy, D. M., Burgess, J. M., Lemon, N. M, Yu, X., Cooper, A. M., Gostin, V. A., Jenkins, R. J. F., and Both, R. A., 2001, A chemostratigraphic overview of the late Cryogenian interglacial sequence in the Adelaide Fold-Thrust Belt, South Australia, Precambrian Res. 106: 149–186.

    Google Scholar 

  • McMechan, M. E., 2000, Neoproterozoic glaciogenic slope deposits, Rocky Mountains, northeast British Columbia, Bull. Can. Pet. Geol. 48: 246–261.

    Google Scholar 

  • Melezhik, V. A., Fallick, A. E., and Pokrovsky, B. G., 2005, Enigmatic nature of thick sedimentary carbonates depleted in 13C beyond the canonical mantle value: The challenges to our understanding of the terrestrial carbon cycle, Precambrian Res. 137: 131–165.

    Google Scholar 

  • Mound, J. E., Mitrovica, J. X., Evans, D. A. D., and Kirschvink, J. L., 1999, A sea-level test for inertial interchange true polar wander events, Geophy. J. Int. 136: F5–F10.

    Google Scholar 

  • Myrow, P. M., and Kaufman, A. J., 1999, A newly discovered cap carbonate above Varanger-age glacial deposits in Newfoundland, Canada, J. Sed. Res. 69: 784–793.

    Google Scholar 

  • Narbonnne, G. M., and Gehling, J. G., 2003, Life after snowball: The oldest complex Ediacaran fossils, Geology 31: 27–30.

    Google Scholar 

  • Pavlov, A. A., Hurtgen, M. T., Kasting, J. F., and Arthur, M. A., 2003, Methane-rich Proterozoic atmosphere? Geology 31: 87–90.

    Google Scholar 

  • Pavlov, A. A., Toon, O. B., Pavlov, A. K., Bally, J., and Pollard, D., 2005, Passing through a giant molecular cloud: Snowball glaciations produced by interstellar dust, Geophys. Res. Lett. 32: L03705, 10.1029/2004GL021890.

    Google Scholar 

  • Pell, S. D., McKirdy, D. M., Jansyn, J., and Jenkins, R. J. F., 1993, Ediacaran carbon isotope stratigraphy of South Australia—An initial study, Trans. Royal Soc. S. Austral. 117: 153–161.

    Google Scholar 

  • Peterson, K. J, and Butterfield, N. J., 2005, Origin of the Eumetazoa: Testing ecological predictions of molecular clocks against the Proterozoic fossil record, Proc. Nat. Acad. Sci. USA 102: 9547–9552.

    Google Scholar 

  • Preiss, W. V., 2000, The Adelaide Geosyncline of South Australia and its significance in Neoproterozoic continental reconstruction, Precambrian Res. 100: 21–63.

    Google Scholar 

  • Rainbird, R. H., Jefferson, C. W., and Young, G. M., 1996, The early Neoproterozoic sedimentary Succession B of northwestern Laurentia: correlations and paleogeographic significance, Geol. Soc. Amer. Bull. 108: 454–470.

    Google Scholar 

  • Rothman, D. H., Hayes, J. M., and Summons, R. E., 2003, Dynamics of the Neoproterozoic carbon cycle, Proc. Nat. Acad. Sci. USA 100: 124–129.

    Google Scholar 

  • Saylor, B. Z., Kaufman, A. J., Grotzinger, J. P., and Urban, F., 1998, A composite reference section for terminal Proterozoic strata of southern Namibia, J. Sed. Res. pages 1223–1235.

    Google Scholar 

  • Schaefer, B. F., and Burgess, J. M., 2003, Re–Os isotopic age constraints on deposition in the Neoproterozoic Amadeus Basin: implications for the ’Snowball Earth’, J. Geol. Soc. London 160: 825–828.

    Google Scholar 

  • Schrag, D. P., Berner, R. A., Hoffman, P. F., and Halverson, G. P., 2002, On the initiation of a snowball Earth, Geochem. Geophys. Geosys. 31: 10.1029/2001GC000219.

    Google Scholar 

  • Semikhatov, M. A., Kuznetsov, A. B., Gorokhov, I. M., Konstantinova, G. V., Melnikov, N. N., Podkovyrov, V. N., and Kutyavin, E. P., 2002, Low 87Sr/86Sr ratios in seawater of the Grenville and post-Grenville time: determining factors, Strat. Geol. Correl. 10: 1–41.

    Google Scholar 

  • Shields, G., and Veizer, J., 2002, Precambrian marine carbonate isotope database: Version 1.1, Geochem. Geophys. Geosys. 3: 10.1029/2001GC000266.

    Google Scholar 

  • Smith, L. H., Kaufman, A. J., Knoll, A. H., and Link, P. K., 1994, Chemostratigraphy of predominantly siliciclastic Neoproterozoic successions: a case study of the Pocatello Formation and lower Brigham Group, Idaho, USA, Geol. Mag. 131: 301–314.

    Google Scholar 

  • Sohl, L. E., Christie-Blick, N., and Kent, D. V., 1998, Paleomagnetic polarity reversals in Marinoan (ca. 600 Ma) glacial deposits of Australia: implications for the duration of low-latitude glaciations in Neoproterozoic time, Geol. Soc. Amer. Bull. 111: 1120–1139.

    Google Scholar 

  • Thompson, M. D., and Bowring, S. A., 2000, Age of the Squantum ’tillite’, Boston basin, Massachusetts: U–Pb zircon constraints on terminal Neoproterozoic glaciation, Amer. J. Sci. 300: 630–655.

    Google Scholar 

  • Trindade, R. I. F., Font, E., D’Agrella-Filho, M. S., Nogueira, A. C. R., and Riccomini, C., 2003, Low-latitude and multiple geomagnetic reversals in the Neoproterozoic Puga cap carbonate, Amazon craton, Terra Nova 15: 441–446.

    Google Scholar 

  • Vidal, G., and Moczydlowska-Vidal, M., 1997, Biodiversity, speciation, and extinction trends of Proterozoic and Cambrian phytoplankton, Paleobiology 23: 230-246.

    Google Scholar 

  • Wallace, M. W., Gostin, V. A., and Keays, R. R., 1989, Discovery of the Acraman impact ejecta blanket in the Officer Basin and its stratigraphic significance, Australia J. Earth Sci. 36: 585–587.

    Google Scholar 

  • Walter, M. R., Veevers, J. J., Calver, C. R., Gorjan, P., and Hill, A. C., 2000, Dating the 840–544 Ma Neoproterozoic interval by isotopes of strontium, carbon, and sulfur in seawater and some interpretive models, Precambrian Res. 100: 371–433.

    Google Scholar 

  • Williams, G. E., 1975, Late Precambrian glacial climate and the Earth’s obliquity, Geol. Mag. 112: 441–465.

    Google Scholar 

  • Williams, G. E., and Wallace, M. W., 2003, The Acraman asteroid impact, South Australia: magnitude and implications for late Vendian environment, J. Geol. Soc. London 160: 545–554.

    Google Scholar 

  • Wingate, M. T. D., Campbell, I. H., Compston, W., and Gibson, G. M., 1998, Ion microprobe U–Pb ages for Neoproterozoic basaltic magmatism in south-central Australia and implications for the breakup of Rodinia, Precambrian Res. 87: 135–159.

    Google Scholar 

  • Wingate, M. T. D., and Giddings, J. W., 2000, Age and palaeomagnetism of the Mundine Well dyke swarm, Western Australia: implications for an Australia-Laurentia connection at 755 Ma, Precambrian Res. 100: 335–357.

    Google Scholar 

  • Workman, R. K., Grotzinger, J. P., and Hart, S. R., 2002, Constraints on Neoproterozoic ocean chemistry from C and B analyses of carbonates from the Witvlei and Nama groups, Namibia, in Goldschmidt Conference Procedings (Davos, Switzerland) pp. A847.

    Google Scholar 

  • Xiao, S., 2004a, Neoproterozoic glaciations and the fossil record, in: The Extreme Proterozoic: Geology, Geochemistry, and Climate(G. Jenkins, M. A. S. McMenamin, C. McKay, and L. Sohl, eds.), Geophysical Monograph Series 146, American Geophysical Union, pp. 199–214.

    Google Scholar 

  • Xiao, S., 2004b, New multicellular algal fossils and acritarchs in Doushantuo chert nodules (Neoproterozoic; Yangze Gorges, South China), J. Paleontol. 78: 393–401.

    Google Scholar 

  • Xiao, S., Bao, H., Wang, H., Kaufman, A. J., Zhou, C., Li, G., Yuan, X., and Ling, H., 2004, The Neoproterozoic Quruqtagh Group in eastern Chinese Tianshan: evidence for a post-Marinoan glaciation, Precambrian Res. 130: 1–26.

    Google Scholar 

  • Xiao, S., Zhang, Y., and Knoll, A. H., 1998, Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite, Nature 391: 553–558.

    Google Scholar 

  • Yoshioka, H., Asahara, Y., Tojo, B., and Kawakami, S., 2003, Systematic variations in C, O, and Sr isotopes and elemental concentrations in Neoproterozoic carbonates in Namibia: implications for glacial to interglacial transition, Precambrian Res. 124: 69–85.

    Google Scholar 

  • Zhang, S., Jiang, G., Zhang, J., Song, B., Kennedy, M. J., and Christie-Blick, N., 2005, U–Pb sensitive high-resolution ion microprobe ages from the Doushantuo Formation in south China: Constraints on late Neoproterozoic glaciations, Geology 33: 473–476.

    Google Scholar 

  • Zhang, Y., Yin, L., Xiao, S., and Knoll, A. H., 1998, Permineralized fossils from the terminal Proterozoic Doushantuo Fm., South China, Paleontol. Soc. Mem. 50: 1–52.

    Google Scholar 

  • Zhou, C., Tucker, R., Xiao, S., Peng, Z., Yuan, X., and Chen, Z., 2004, New constraints on the ages of Neoproterozoic glaciations in south China, Geology 32: 437–440.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Halverson, G.P. (2006). A Neoproterozoic Chronology. In: Xiao, S., Kaufman, A.J. (eds) Neoproterozoic Geobiology and Paleobiology. Topics in Geobiology, vol 27. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5202-2_8

Download citation

Publish with us

Policies and ethics