Skip to main content

The Proterozoic Fossil Record of Heterotrophic Eukaryotes

  • Chapter
Neoproterozoic Geobiology and Paleobiology

Part of the book series: Topics in Geobiology ((TGBI,volume 27))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allison, C. W., and Awramik, S. M., 1989, Organic-walled microfossils from the earliest Cambrian or latest Proterozoic Tindir Group rocks, northwest Canada, Precambrian Res. 43: 253–294.

    Article  Google Scholar 

  • Allison, C. W., and Hilgert, J. W., 1986, Scale microfossils from the Early Cambrian of Northwest Canada, J. Paleont. 60 (5): 973–1015.

    Google Scholar 

  • Anbar, A. D., and Knoll, A. H., 2002, Proterozoic ocean chemistry and evolution: a bioinorganic bridge? Science 297: 1137–1142.

    Article  Google Scholar 

  • Andersson, J. O., and Roger, A. J., 2002, A cyanobacterial gene in nonphotosynthetic protists—an early chloroplast acquisition in eukaryotes? Curr.Biol. 12: 115–119.

    Article  Google Scholar 

  • Arnold, G. L., Anbar, A. D., Barling, J., and Lyons, T. W., 2004, Molybdenum isotope evidence for widespread anoxia in mid-Proterozoic oceans, Science, 304: 87–90.

    Article  Google Scholar 

  • Arouri, K. R., Greenwood, P. F., and Walter, M. R., 2000, Biological affinities of Neoproterozoic acritarchs from Australia: microscopic and chemical characterisation, Org. Geochem. 31: 75–89.

    Article  Google Scholar 

  • Baldauf, S. L., 2003, The deep roots of eukaryotes, Science 300: 1703–1706.

    Article  Google Scholar 

  • Bartley, J. K., 1996, Actualistic taphonomy of Cyanobacteria: implications for the Precambrian fossil record, Palaios 11: 571–586.

    Article  Google Scholar 

  • Bartley, J. K., and Kah, L. C., 2004, Marine carbon reservoir, C-org–C-carb coupling, and the evolution of the Proterozoic carbon cycle, Geology 32: 129–132.

    Article  Google Scholar 

  • Bass, D., and Cavalier-Smith, T., 2004, Phylum-specific environmental DNA analysis reveals remarkably high global biodiversity of Cercozoa (Protozoa), Int. J. Syst. Evol. Microbiol. 54: 2393–2404.

    Article  Google Scholar 

  • Bonner, J. T., 1967, Cellular Slime Molds, Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Bottjer, D. J., and Clapham, M. E., 2006, Evolutionary paleoecology of Ediacaran benthic marine animals. in: Neoproterozoic Geobiology and Paleobiology (S. Xiao and A. J. Kaufman, eds.), Springer, Dordrecht, the Netherlands, pp. 91–114.

    Google Scholar 

  • Brocks, J. J., Buick, R., Logan, G. A., and Summons, R. E., 2003a, Composition and syngeneity of molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Pilbara Craton, Western Australia, Geochim. Cosmochim. Acta 67: 4289–4319.

    Article  Google Scholar 

  • Brocks, J. J., Buick, R., Summons, R. E., and Logan, G. A., 2003b, A reconstruction of Archean biological diversity based on molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Hamersley Basin, Western Australia, Geochim. Cosmochim. Acta 67: 4321–4335.

    Article  Google Scholar 

  • Brocks, J. J., Love, G. D., Summons, R. E., Knoll, A.H., Logan, G. A, Bowden, S. A., 2005, Biomarker evidence for green and purple sulfur bacteria in a stratified Palaeoproterozoic sea, Nature 437: 866–870.

    Article  Google Scholar 

  • Butterfield, N. J.,2000, Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic-Neoproterozoic radiation of eukaryotes, Paleobiology 26: 386–404.

    Article  Google Scholar 

  • Butterfield, N. J., 2004, A vaucheriacean alga from the middle Neoproterozoic of Spitsbergen: implications for the evolution of Proterozoic eukaryotes and the Cambrian explosion, Paleobiology 30: 231–252.

    Article  Google Scholar 

  • Butterfield, N. J., 2005, Probable Proterozoic Fungi, Paleobiology 31: 165–182.

    Article  Google Scholar 

  • Butterfield, N. J., and Rainbird, R. H., 1998, Diverse organic-walled fossils, including “possible dinoflagellates” from the early Neoproterozoic of arctic Canada, Geology 26: 963–966.

    Article  Google Scholar 

  • Butterfield, N. J., Knoll, A. H., and Swett, K., 1990, A bangiophyte red alga from the Proterozoic of arctic Canada, Science 250: 104–107.

    Article  Google Scholar 

  • Butterfield, N. J., Knoll, A. H., and Swett, K., 1994, Paleobiology of the Neoproterozoic Svanbergfjellet Formation, Spitsbergen, Fossils Strata 34: 1–84.

    Google Scholar 

  • Canfield, D. E., 1998, A new model for Proterozoic ocean chemistry, Nature 396: 450–453.

    Article  Google Scholar 

  • Cavalier-Smith, T., 1998, A revised six-kingdom system of life, Biol. Rev. 73: 203–266.

    Article  Google Scholar 

  • Condon, D., Zhu, M., Bowring, S., Wang, W., Yang, A., and Jin, Y., 2005, U–Pb ages from the Neoproterozoic Doushantuo Formation, China, Science 308: 95–98.

    Article  Google Scholar 

  • Culver, S. J., 1991, Early Cambrian Foraminifera from West Africa, Science 254: 689–691.

    Article  Google Scholar 

  • Culver, S. J., 1994, Early Cambrian Foraminifera from the southwestern Taoudeni Basin, West Africa, J. Foram. Res. 24: 191–202.

    Article  Google Scholar 

  • Danelian, T., and Moreira, D., 2004, Palaeontological and molecular arguments for the origin of silica-secreting marine organisms, C. R. Palevol 3: 229–236.

    Article  Google Scholar 

  • Darby, D. G., 1974, Reproductive modes of Huroniospora microreticulata from cherts of the Precambrian Gunflint Iron-Formation, Geol. Soc. Amer. Bull. 85: 1595–1596.

    Article  Google Scholar 

  • de Leeuw, J. W., and Largeau, C., 1993, A review of macromolecular organic compounds that comprise living organisms and their role in kerogen, coal, and petroleum formation, in: Organic Geochemistry: Principles and Applications (M. H. Engel and S. A. Macko, eds.), Topics in Geobiology, Plenum Press, New York, pp. 23–72.

    Google Scholar 

  • Deflandre, G., and Deunff, J., 1957, Sur la presence de cilies fossiles de la familie des Folliculinidae dans un silex du Gabon, C. R. Hebd. Séances Acad. Sci. 244: 3090–3093.

    Google Scholar 

  • Dodge, J. D., and Lee, J. J., 2000, Phylum Dinoflagellata Bütschli, 1885, in: An Illustrated Guide to the Protozoa (J. J. Lee, G. F. Leedale and P. Bradbury, eds.), Society of Protozoologists, Lawrence, Kansas, pp. 656–689.

    Google Scholar 

  • Dörfelt, H., Schmidt, A. R., Ullman, P., and Wunderlick, J., 2003, The oldest myxogastrid slime mold, Mycol. Res. 107: 123–126.

    Article  Google Scholar 

  • Douzery, E. J. P., Snell, E. A., Bapteste, E., Delsuc, F., and Philippe, H., 2004, The timing of eukaryotic evolution: does a relaxed molecular clock reconcile proteins and fossils? Proc. Natl. Acad. Sci. USA 101: 15386–15391.

    Article  Google Scholar 

  • Fennel, K., Follows, M., and Falkowski, P.G., 2005, The co-evolution of the nitrogen, carbon,and oxygen cycles in the Proterozoic ocean, Am. J. Sci. 305: 526–545.

    Article  Google Scholar 

  • Fensome, R. A., Saldarriaga, J. F., and Taylor, F. J. R., 1999, Dinoflagellate phylogeny revisited: reconciling morphological and molecular based phylogenies, Grana 38: 66–80.

    Google Scholar 

  • Frank, T. D., Kah, L. C., and Lyons, T. W., 2003, Changes in organic matter production and accumulation as a mechanism for isotopic evolution in the Mesoproterozoic ocean, Geol. Mag. 140: 397–420.

    Article  Google Scholar 

  • Gehling, J. G., 1999, Microbial mats in terminal Proterozoic siliciclastics: Ediacaran death masks, Palaios 14: 40–57.

    Article  Google Scholar 

  • Gelin, F., Boogers, I., Noordeloos, A. A. M., Damsté, J. S. S., Riegman, R., and Leeuw, J. W. d., 1997, Resistant biomacromolecules in marine microalgae of the classes Eustigmatophyceae and Chlorophyceae: geochemical implications, Org. Geochem. 26: 659–675.

    Article  Google Scholar 

  • Gelin, F., Volkman, J. K., Largeau, C., Derenne, S., Damsté, J. S. S., and Leeuw, J. W. D., 1999, Distribution of aliphatic, nonhydrolyzable biopolymers in marine microalgae, Org. Geochem. 30: 147–159.

    Article  Google Scholar 

  • German, T., 1979, Nakhodki gribov v Rifee (Discoveries of fungi in the Riphean), in: Paleontologiia Dokembriia i Rannego Kembriia (B. Sokolov, ed.), Nauka, Leningrad, pp. 129–136.

    Google Scholar 

  • German, T., 1981, Nitchatye mikroorganizmy Lakhandinskoi svity reki Mai [Filamentous microorganisms in the Lakhanda Formation on the Maya River], Paleontol. Zh. 1981(2): 100–107.

    Google Scholar 

  • German, T. N., 1990, Organic World Billion Year Ago, Nauka, Leningrad.

    Google Scholar 

  • Gnekow, M. A., 1981, Beobachtungen zur Biologie und Ultrastruktur der moobewohnenden Thecamöbe Nebela tincta (Rhizopoda). Arch. Protistenkd. 124: 36–69.

    Google Scholar 

  • Gooday, A. J., and Tendal, O. S., 2000, Class Xenophyophorea Schulze, 1904, in: An Illustrated Guide to the Protozoa (J. J. Lee, G. F. Leedale, and P. Bradbury, eds.), Society of Protozoologists, Lawrence, Kansas, pp. 1086–1097.

    Google Scholar 

  • Graham, L. E., and Wilcox, L. W., 2000, Algae, Prentice Hall, Upper Saddle River, NJ.

    Google Scholar 

  • Grant, S. W. F., 1990, Shell structure and distribution of Cloudina, a potential index fossil for the terminal Proterozoic, Am. J. Sci. 290A: 261–294.

    Google Scholar 

  • Gray, J., and Boucot, A. J., 1989, Is Moyeria a euglenoid?, Lethaia 22: 447–456.

    Google Scholar 

  • Grazhdankin, D., and Seilacher, A., 2003, Underground Vendobionta from Namibia, Palaeontology 45: 57–78.

    Article  Google Scholar 

  • Gregory, P. H., 1984, The fungal mycelium: an historical perspective, Trans. Br. Mycol. Soc. 82: 1–11.

    Article  Google Scholar 

  • Hackett, J. D., Anderson, D. M., Erdner, D. L., and Bhattacharya, D., 2004, Dinoflagellates: a remarkable evolutionary experiment, Am. J. Bot. 91: 1523–1534.

    Google Scholar 

  • Hagadorn, J. W., Dott, R. H., and Damrow, D., 2002, Stranded on an Upper Cambrian shoreline: Medusae from central Wisconsin, Geology 30: 103–106.

    Article  Google Scholar 

  • Han, T.-M., and Runnegar, B. 1992, Megascopic eukaryotic algae from the 2.1-billion-year-old Negaunee Iron-Formation, Michigan, Science 257: 232–235.

    Article  Google Scholar 

  • Hofmann, H. J., 1994, Proterozoic carbonaceous compressions ("metaphytes" and "worms"), in: Early Life on Earth (S. Bengtson, ed), Columbia University Press, New York, pp. 342–357.

    Google Scholar 

  • Horodyski, R. J., and Mankiewicz, C., 1990, Possible Late Proterozoic skeletal algae from the Pahrump Group, Kingston Range, southeastern California, Am. J. Sci. 290A: 149–169.

    Google Scholar 

  • Ingold, C. T., and Hudson, H. J., 1993, The Biology of Fungi, Chapman and Hall, New York.

    Google Scholar 

  • Javaux, E. J., Knoll, A. H., and Walter, M. R., 2001, Morphological and ecological complexity in early eukaryotic ecosystems, Nature 412: 66–69.

    Article  Google Scholar 

  • Jensen, S., Droser, M. L., and Gehling, J. G., 2006, A critical look at the Ediacaran trace fossil record. in: Neoproterozoic Geobiology and Paleobiology (S. Xiao and A. J. Kaufman, eds.), Springer, Dordrecht, the Netherlands, pp. 115–157.

    Google Scholar 

  • Kamaya, R., Mori, T., Shoji, H., Ageta, H., Chang, H. C., and Hsu, H. Y., 1991, Fern constituents: triterpenes from Oleandra wallichii, Yakugaku Zasshi (J. Pharmaceutical Soc. Japan), 11: 120–125.

    Google Scholar 

  • Keeling, P. J.,2004, Diversity and evolutionary history of plastids and their hosts, Am. J. Bot. 91: 1481–1493.

    Google Scholar 

  • Kleemann, G., Poralla, K., Englert, G., Kjosen, H., Liaaen-jensen, N., Neunlist, S., and Rohmer, M., 1990, Tetrahymanol from the phototrophic bacterium Rhodopseudomonas palustris: first report of a gammacerane triterpene from a prokaryote, J. Gen. Microbiol. 136: 2551–2553.

    Google Scholar 

  • Knoll, A. H., 1996, Archean and Proterozoic paleontology, in: Palynology: Principles and Applications (J. Jansonius and D. C. McGregor, eds.), American Association of Stratigraphic Palynologists Foundation, pp. 51–80.

    Google Scholar 

  • Leadbetter, B. S. C., and Thomsen, H. A., 2000, Order Choanoflagellida, Kent, 1880, An Illustrated Guide to the Protozoa, Second Edition(J. J. Lee, G. F. Leedale, and P. Bradbury, eds.), Allen Press, Lawrence, Kansas, pp. 14–38.

    Google Scholar 

  • Leander, B. S., 2004, Did trypanosomatid parasites have photosynthetic ancestors? Trends Microbiol. 12: 251–258.

    Article  Google Scholar 

  • Lee, J. J., Leedale, G. F., and Bradbury, P. (eds.), 2000, An Illustrated Guide to the Protozoa, Society of Protozoologists, Lawrence, KS.

    Google Scholar 

  • Lindgren, S., 1981, Remarks on the taxonomy, botanical affinities, and distribution of leiospheres, Stockh. Contr. Geol. 38: 1–20.

    Google Scholar 

  • Martí Mus, M., and Moczydlowska, M., 2000, Internal morphology and taphonomic history of the Neoproterozoic vase-shaped microfossils from the Visingsö Group, Sweden, Norsk Geol. Tidsskr. 80: 213–228.

    Article  Google Scholar 

  • Martin, F., 1993, Acritarchs: a review, Biol. Rev. 68: 475–538.

    Google Scholar 

  • McIlroy, D., Green, O. R., and Brasier, M. D., 2001, Palaeobiology and evolution of the earliest agglutinated Foraminifera: Platysolenites, Spirosolenites and related forms, Lethaia 34: 13–29.

    Article  Google Scholar 

  • Medioli, F. S., Scott, D. B., Collins, E. S., and McCarthy, F. M. G., 1990, Fossil thecamoebians: present status and prospects for the future, in: Paleoecology, Biostratigraphy, Paleoceanography and Taxonomy of Agglutinated Foraminifera (C. Hemleben et al., eds.), Kluwer Academic, Dordrecht, Netherlands, pp. 813–839.

    Google Scholar 

  • Meisterfeld, R., 2000a, Order Arcellinida Kent, 1880, in: An Illustrated Guide to the Protozoa (J. J. Lee, G. F. Leedale, and P. Bradbury, eds.), Society of Protozoologists, Lawrence, Kansas, pp. 827–860.

    Google Scholar 

  • Meisterfeld, R., 2000b, Testate amoebae with filopodia, in: An illustrated guide to the Protozoa (J. J. Lee, G. F. Leedale, and P. Bradbury, eds,), Society of Protozoologists, Lawrence, Kansas, pp. 1054–1084.

    Google Scholar 

  • Mendelson, C. V., and Schopf, J. W., 1992, Proterozoic and Early Cambrian acritarchs, in: The Proterozoic Biosphere (J. W. Schopf and C. Klein, eds.), Cambridge University Press, Cambridge, pp. 219–232.

    Google Scholar 

  • Moldowan, J. M., and Talyzina, N. M., 1998, Biogeochemical evidence for dinoflagellate ancestors in the Early Cambrian, Science 281: 1168–1170.

    Article  Google Scholar 

  • Moldowan, J. M., Dahl, J., Jacobsen, S. R., Huizinga, B. J., Fago, F. J., Shetty, R., Watt, D. S., and Peters, K. E., 1996, Chemostratigraphy reconstruction of biofacies: molecular evidence linking cyst-forming dinoflagellates with pre-Triassic ancestors, Geology 24: 159–162.

    Article  Google Scholar 

  • Moldowan, J. M., Jacobsen, S. R., Dahl, J., Al-Hajji, A., Huizinga, B. J., and Fago, F. J., 2001, Molecular fossils demonstrate Precambrian origins of dinoflagellates, in: The Ecology of the Cambrian Radiation (A. Yu. Zhuravlev and R. Riding, eds.), Columbia University Press, New York, pp. 475–493.

    Google Scholar 

  • Nikolaev, S. I., Berney, C., Fahrni, J. F., Bolivar, I., Polet, S., Mylnikov, A. P., Aleshin, V. V., Petrov, N. B., and Pawlowski, J., 2004, The twilight of Heliozoa and rise of Rhizaria, an emerging supergroup of amoeboid eukaryotes, Proc. Natl. Acad. Sci. USA 101: 8066–8071.

    Article  Google Scholar 

  • Pawlowski, J., Holzmann, M., Fahrni, J., and Richardson, S. L., 2003, Small subunit ribosomal DNA suggests that the xenophyophorean Syringammina corbicula is a foraminiferan, J. Eukaryot. Microbiol. 50: 483–487.

    Article  Google Scholar 

  • Peng, P., Sheng, G., Fu, J., and Yan, Y., 1998, Biological markers in 1.7 billion year old rock from the Tuanshanzi Formation, Jixian strata section, North China, Org. Geochem. 29: 1321–1329.

    Article  Google Scholar 

  • Peterson, K. J., Waggoner, B., and Hagadorn, J. W., 2003, A fungal analog for Newfoundland Ediacaran fossils, Integr. Comp. Biol. 43: 127–136.

    Article  Google Scholar 

  • Philip, G. A., Creevey, C. J., and McInerney, J. O., 2005, The Opisthokonta and the Ecdysozoa may not be clades: stronger support for the grouping of plant and animal than for animal and fungi and stronger support for the Coelomata than Ecdysozoa, Molec. Biol. Evol. 22: 1175–1184.

    Article  Google Scholar 

  • Poinar, G., and Poinar, R., 2004, Paleoleishmania proterus n. gen., n. sp., (Trypanosomatidae: Kinetoplastida) from Cretaceous Burmese amber, Protist 155: 305–310.

    Article  Google Scholar 

  • Porter, S. M., 2004, The fossil record of early eukaryotic diversification, Paleontol. Soc. Papers 10: 35–50.

    Google Scholar 

  • Porter, S. M., and Knoll, A. H., 2000, Testate amoebae in the Neoproterozoic Era: evidence from vase-shaped microfossils in the Chuar Group, Grand Canyon, Paleobiology 26: 360–385.

    Article  Google Scholar 

  • Porter, S. M., Meisterfeld, R., and Knoll, A. H., 2003, Vase-shaped microfossils from the Neoproterozoic Chuar Group, Grand Canyon: a classification guided by modern testate amoebae, J. Paleontol. 77: 409–429.

    Article  Google Scholar 

  • Pratt, L. M., Summons, R. E., and Hieshima, G. B., 1991, Sterane and triterpane biomarkers in the Precambrian Nonesuch Formation, North American Midcontinent Rift, Geochim. Cosmochim. Acta 55: 911–916.

    Article  Google Scholar 

  • Retallack, G. J., 1994, Were the Ediacaran fossils lichens? Paleobiology 20: 523–544.

    Google Scholar 

  • Schneider, D. A., Bickford, M. E., Cannon, W. F., Sculz, K. J., and Hamilton, M. A., 2002, Age of volcanic rocks and syndepositional iron formations, Marquette Range Supergroup: implications for the tectonic setting of Paleoproterozoic iron formations of the Lake Superior region, Can. J. Earth Sci. 39: 999–1012.

    Article  Google Scholar 

  • Schönborn, W., Dörfelt, H., Foissner, W., Krienitz, L., and Schäfer, U., 1999, A fossilized microcenosis in Triassic amber, J. Eukaryot. Microbiol. 46: 571–584.

    Article  Google Scholar 

  • Schopf, J. W., 1968, Microflora of the Bitter Springs Formation, Late Precambrian, central Australia, J. Paleontol. 42: 651–688.

    Google Scholar 

  • Schopf, J. W., and Barghoorn, E. S., 1969, Microorganisms from the late Precambrian of South Australia, J. Paleontol. 43: 111–118.

    Google Scholar 

  • Seilacher, A., Grazhdankin, D., and Legouta, A., 2003, Ediacaran biota: the dawn of animal life in the shadow of giant protists, Paleontol. Res. 7: 43–54.

    Article  Google Scholar 

  • Shen, Y, Canfield, D.E., and Knoll, A.H., 2002, Middle Proterozoic ocean chemistry: evidence from the McArthur Basin, northern Australia, Am. J. Sci. 302: 81–109.

    Article  Google Scholar 

  • Shen, Y., Knoll, A.H., and Walter, M. R., 2003, Evidence for low sulphate and anoxia in a mid-Proterozoic marine basin, Nature 423: 632–635.

    Article  Google Scholar 

  • Sherwood-Pike, M., 1991, Fossils as keys to evolution in fungi, BioSystems 25: 121–129.

    Article  Google Scholar 

  • Simpson, A. G. B., and Roger, A. J., 2002, Eukaryotic evolution: getting to the root of the problem, Curr. Biol. 12: R691–R693.

    Article  Google Scholar 

  • Simpson, A. G. B., and Roger, A. J., 2004, The real ’kingdoms’ of eukaryotes, Curr. Biol. 14: R693–R696.

    Article  Google Scholar 

  • Stechmann, A., and Cavalier-Smith, T., 2002, Rooting the eukaryote tree by using a derived gene fusion, Science 297: 89–91.

    Article  Google Scholar 

  • Stechmann, A., and Cavalier-Smith, T., 2003, The root of the eukaryote tree pinpointed, Curr. Biol. 13: R665–R666.

    Article  Google Scholar 

  • Stephenson, S. L., and Stempen, H., 1994, Myxomycetes: A Handbook of Slime Molds, Timber Press, Inc., Portland, Oregon.

    Google Scholar 

  • Summons, R. E., S. C. Brassell, G. Eglinton, E. Evans, R. J. Horodyski, N. Robinson, and D. M. Ward, 1988, Distinctive hydrocarbon biomarkers from fossiliferous sediment of the Late Proterozoic Walcott Member, Chuar Group, Grand Canyon, Arizona, Geochim. Cosmochim. Acta 52: 2625–2637.

    Article  Google Scholar 

  • Summons, R. E., Thomas, J., Maxwell, J. R., and Boreham, C. J., 1992, Secular and environmental constraints on the occurrence of dinosterane in sediments, Geochim. Cosmochim. Acta 56: 2437–2444.

    Article  Google Scholar 

  • Summons, R. E., and Walter, M. R., 1990, Molecular fossils and microfossils of prokaryotes and protists from Proterozoic sediments, Am. J. Sci. 290A: 212–244.

    Google Scholar 

  • Talyzina, N. M., Moldowan, J. M., Johannisson, A., and Fago, F. J., 2000, Affinities of Early Cambrian acritarchs studied by using microscopy, fluorescence flow cytometry and biomarkers, Rev. Palaeobot. Palynol. 108: 37–53.

    Article  Google Scholar 

  • Tappan, H., 1980, The Paleobiology of Plant Protists, San Francisco.

    Google Scholar 

  • Tappan, H., 1993, Tintinnids, in: Fossil Prokaryotes and Protists (J. H. Lipps, ed.), Blackwell Scientific Publications, Boston, pp. 285–303.

    Google Scholar 

  • Timofeev, B. V., 1970, Une découverte de phycomycetes dans le Précambrien, Rev. Palaeobot. Palynol., 10: 79–81.

    Article  Google Scholar 

  • Versteegh, G. J. M., and Blokker, P., 2004, Resistant macromolecules of extant and fossil microalgae, Phycol. Res. 52: 325–339.

    Article  Google Scholar 

  • Wang, D., Kumar, S., and Hedges, S., 1999, Divergence time estimates for the early history of animal phyla and the origin of plants, animals and fungi, Proc. R. Soc. Lond [Biol.] 266: 163–171.

    Article  Google Scholar 

  • Watters, W. A., and Grotzinger, J. P., 2001, Digital reconstruction of calcified early metazoans, terminal Proterozoic Nama Group, Namibia, Paleobiology 27: 159–171.

    Article  Google Scholar 

  • Won, M. Z., and Below, R., 1999, Cambrian Radiolaria from the Georgina Basin, Queensland, Australia, Micropaleontology 45: 325–363.

    Article  Google Scholar 

  • Wood, R. A., Grotzinger, J. P., and Dickson, J. A. D., 2002, Proterozoic modular biomineralized metazoan from the Nama Group, Namibia, Science 296: 2383–2386.

    Article  Google Scholar 

  • Woods, K. N., Knoll, A. H., and German, T., 1998, Xanthophyte algae from the Mesoproterozoic/Neoproterozoic transition: confirmation and evolutionary implications, Geol. Soc. Amer. Abstr. Progr. 30: A232.

    Google Scholar 

  • Wylezich, C., Meisterfeld, R., Meisterfeld, S., and Schlegel, M., 2002, Phylogenetic analyses of small subunit ribosomal RNA coding regions reveal a monophyletic lineage of euglyphid testate amoebae (Order Euglyphida). J. Eukaryot. Microbiol. 49: 108–118.

    Article  Google Scholar 

  • Xiao, S., and Dong, L., 2006, On the morphological and ecological history of Proterozoic macroalgae. in: Neoproterozoic Geobiology and Paleobiology (S. Xiao and A. J. Kaufman, eds.), Springer, Dordrecht, the Netherlands, pp. 57–90.

    Google Scholar 

  • Xiao, S., and Knoll, A. H., 2000, Phosphatized animal embryos from the Neoproterozoic Doushantuo Formation at Weng’an, Guizhou, South China, J. Paleontol. 74: 767–788.

    Article  Google Scholar 

  • Xiao, S., A.H. Knoll, and X. Yuan, 1998a, Morphological reconstruction of Miaohephyton bifurcatum, a possible brown alga from the Neoproterozoic Doushantuo Formation, South China, J. Paleontol. 72: 1072–1086.

    Google Scholar 

  • Xiao, S., Y. Zhang, and A.H. Knoll, 1998b, Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite, Nature 391: 553–558.

    Article  Google Scholar 

  • Xiao, S., Yuan, X., Steiner, M., and Knoll, A. H., 2002, Macroscopic carbonaceous compressions in a terminal Proterozoic shale: a systematic reassessment of the Miaohe biota, South China, J. Paleontol. 76: 347–376.

    Article  Google Scholar 

  • Xiao, S., Knoll, A. H., Yuan, X. L., and Pueschel, C. M., 2004, Phosphatized multicellular algae in the Neoproterozoic Doushantua Formation, China, and the early evolution of the florideophyte algae, Am. J. Bot. 91: 214–227.

    Google Scholar 

  • Yin, L., 1997, Acanthomorphic acritarchs from Meso-Neoproterozoic shales of the Ruyang Group, Shanxi, China, Rev. Palaeobot. Palynol., 98: 15–25.

    Article  Google Scholar 

  • Yoon, H., Hackett, J., Ciniglia, C., Pinto, G., and Bhattacharya, D., 2004, A molecular timeline for the origin of photosynthetic eukaryotes, Molec. Biol. Evol. 21: 809–818.

    Article  Google Scholar 

  • Yuan, X., Xiao, S., and Taylor, T. N., 2005, Lichen-like symbiosis 600 million years ago, Science 308: 1017–1020.

    Article  Google Scholar 

  • Zander, J. M., Caspi, E., Pandey, G. N., and Mitra, C., 1969, The presence of tetrahymanol in Oleandra wallichii, Phytochemistry 8: 2265–2267.

    Article  Google Scholar 

  • Zhuravlev, A. Y., 1993, Were Ediacaran Vendobionta multicellulars? Neues Jahrb. Geol. Paläontol. 190: 299–314.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Porter, S.M. (2006). The Proterozoic Fossil Record of Heterotrophic Eukaryotes. In: Xiao, S., Kaufman, A.J. (eds) Neoproterozoic Geobiology and Paleobiology. Topics in Geobiology, vol 27. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5202-2_1

Download citation

Publish with us

Policies and ethics