Skip to main content

Salicylic Acid and Reactive Oxygen Species in the Activation of Stress Defense Genes

  • Chapter
Salicylic Acid: A Plant Hormone

Abstract

Activation of salicylic acid (SA) biosynthesis in association with changes in redox homeostasis occurs in plants exposed to diverse biotic and abiotic stresses such as pathogens infection, excess of UV radiation, or increased levels of ozone (O3). Under these conditions, reactive oxygen species (ROS) and SA are the crucial signals for triggering defense-related processes that are genetically controlled, e.g. programmed cell death (PCD) and the expression of genes that cause defense against stress. Increasing evidence in the yesteryears supports the idea that SA interplays with ROS in the genetic-controlled defense reactions. In this chapter we discuss this evidence, particularly focusing on the expression of stress defense genes. In the first section we are giving an overview about how the changes in SA levels and redox homeostasis occur in the establishment of the defense reaction against stressful conditions. In the second section we will review the information obtained from genetic and biochemical approaches about signaling proteins and promoter DNA elements, involved in the activation of defense genes by SA. Redox controlled transcriptional co-regulators, transcription factors and promoter DNA elements have been shown to mediate SA induced activation of these genes. In the third section we are going to analyze available transcriptome data obtained from Arabidopsis plants, either treated with SA or analogs or subjected to stress conditions. We have classified the up-regulated genes according to their known or putative functions. Interestingly, we found genes coding for proteins with antioxidant and detoxifying functions, together with other defense-related functions. Taking together, these evidences suggest that SA plays a role in controlling the cellular redox balance at the onset of the defense response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • A.-H.-Mackerness, S., John, C.F., Jordan, B., and Thomas, B. 2001. Early signaling components in ultraviolet-B responses: distinct roles for different reactive oxygen species and nitric oxide. FEBS Lett., 489: 237-242.

    Article  Google Scholar 

  • Alvarez, M.E., Pennell, R.I., Meijer, P.J., Ishikawa, A., Dixon, R.A., and Lamb, C. 1998. Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell, 92: 773-784.

    Article  PubMed  CAS  Google Scholar 

  • Andreasson, E., Jenkins, T., Brodersen, P., Thorgrimsen, S., Petersen, N.H., Zhu, S., Qiu, J.L., Micheelsen, P., Rocher, A., Petersen, M., Newman, M.A., Bjorn Nielsen, H., Hirt, H., Somssich, I., Mattsson, O., and Mundy, J. 2005. The MAP kinase substrate MKS1 is a regulator of plant defense responses. Embo J., 24: 2579-2589.

    Article  PubMed  CAS  Google Scholar 

  • Apel, K., and Hirt, H. 2004. Reactive Oxygen Species: Metabolism, Oxidative Stress, and Signal Transduction. Annu. Rev. Plant Biol., 55: 373-399.

    Article  PubMed  CAS  Google Scholar 

  • Asai, T., Tena, G., Plotnikova, J., Willmann, M.R., Chiu, W.-L., Gomez-Gomez, L., Boller, T., Ausubel, F.M., and Sheen, J. 2002. MAP kinase signalling cascade in Arabidopsis innate immunity. Nature, 415: 977-983.

    Article  PubMed  CAS  Google Scholar 

  • Benfey, P.N., Ren, L., and Chua, N.H. 1990. Tissue-specific expression from CaMV 35S enhancer subdomains in early stages of plant development. Embo J., 9: 1677-1684.

    PubMed  CAS  Google Scholar 

  • Bi, Y.M., Kenton, P., Mur, L., Darby, R., and Draper, J. 1995. Hydrogen peroxide does not function downstream of salicylic acid in the induction of PR protein expression. Plant J., 8: 235-245.

    Article  PubMed  CAS  Google Scholar 

  • Blanco, F., Garreton, V., Frey, N., Dominguez, C., Perez-acle, T., Van Der Straeten, D., Jordana, X., and Holuigue, L. 2005. Identification of NPR1-dependent and independent genes early induced by salicylic acid treatment in Arabidopsis. Plant Mol. Biol., 59: 929-946.

    Article  CAS  Google Scholar 

  • Borsani, O., Valpuesta, V., and Botella, M.A. 2001. Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiol., 126: 1024-1030.

    Article  PubMed  CAS  Google Scholar 

  • Broin, M., Cuine, S., Eymery, F., and Rey, P. 2002. The Plastidic 2-Cysteine Peroxiredoxin Is a Target for a Thioredoxin Involved in the Protection of the Photosynthetic Apparatus against Oxidative Damage. Plant Cell, 14: 1417-1432.

    Article  PubMed  CAS  Google Scholar 

  • Buchanan, B.B., and Balmer, Y. 2005. Redox Regulation: A Broadening Horizon. Annu. Rev. Plant Biol., 56: 187-220.

    Article  PubMed  CAS  Google Scholar 

  • Cao, H., Bowling, S.A., Gordon, A.S., and Dong, X. 1994. Characterization of an Arabidopsis Mutant That Is Nonresponsive to Inducers of Systemic Acquired Resistance. Plant Cell, 6: 1583-1592.

    Article  PubMed  CAS  Google Scholar 

  • Cao, H., Glazebrook, J., Clarke, J.D., Volko, S., and Dong, X. 1997. The Arabidopsis NPR1 Gene That Controls Systemic Acquired Resistance Encodes a Novel Protein Containing Ankyrin Repeats. Cell, 88: 57-63.

    Article  PubMed  CAS  Google Scholar 

  • Cao, H., Li, X., and Dong, X. 1998. Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proc. Natl. Acad. Sci. USA. 95: 6531-6536.

    Article  PubMed  CAS  Google Scholar 

  • Chamnongpol, S., Willekens, H., Moeder, W., Langebartels, C., Sandermann, H., Jr., Van Montagu, M., Inze, D., and Van Camp, W. 1998. Defense activation and enhanced pathogen tolerance induced by H$2$O$2$ in transgenic tobacco. Proc. Natl. Acad. Sci. USA. 95: 5818-5823.

    Article  PubMed  CAS  Google Scholar 

  • Chapple, C. 1998. Molecular-genetic analysis of plant cytochrome P450-dependet monooxigenases. Annu. Rev.Plant Physiol. Plant Mol. Biol., 49: 311-343.

    Article  PubMed  CAS  Google Scholar 

  • Chen, C., and Chen, Z. 2002. Potentiation of Developmentally Regulated Plant Defense Response by AtWRKY18, a Pathogen-Induced Arabidopsis Transcription Factor. Plant Physiol., 129: 706-716.

    Article  PubMed  CAS  Google Scholar 

  • Chen, W., and Singh, K.B. 1999. The auxin, hydrogen peroxide and salicylic acid induced expression of the Arabidopsis GST6 promoter is mediated in part by an ocs element. Plant J., 19: 667-677.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Z., Silva, H., and Klessig, D. 1993. Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science, 262: 1883-1886.

    Article  PubMed  CAS  Google Scholar 

  • Cheong, Y.H., Chang, H.-S., Gupta, R., Wang, X., Zhu, T., and Luan, S. 2002. Transcriptional Profiling Reveals Novel Interactions between Wounding, Pathogen, Abiotic Stress, and Hormonal Responses in Arabidopsis. Plant Physiol., 129: 661-677.

    Article  PubMed  CAS  Google Scholar 

  • Chern, M., Fitzgerald, H.A., Canlas, P.E., Navarre, D.A., and Ronald, P.C. 2005. Overexpression of a rice NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light. Mol Plant Microbe Interact., 18: 511-520.

    Article  PubMed  CAS  Google Scholar 

  • Chung, Y.M., Bae, Y.S., and Lee, S.Y. 2003. Molecular ordering of ROS production, mitochondrial changes, and caspase activation during sodium salicylate-induced apoptosis. Free Rad. Biol. Med., 34: 434-442.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, S.M., Mur, L.A.J., Wood, J.E., and Scott, I.M. 2004. Salicylic acid dependent signaling promotes basal thermotolerance but is not essential for acquired thermotolerance in Arabidopsis thaliana. Plant J., 38: 432-447.

    Article  PubMed  CAS  Google Scholar 

  • Collinge, M.A., and Walker, J.C. 1994. Isolation of an Arabidopsis thaliana casein kinase II beta subunit by complementation in Saccharomyces cerevisiae. Plant Mol. Biol., 25: 649-658.

    Article  PubMed  CAS  Google Scholar 

  • Dangl, J.L., and Jones, J.D.G. 2001. Plant pathogens and integrated defence responses to infection. Nature, 411: 826-833.

    Article  PubMed  CAS  Google Scholar 

  • Daniel, X., Lacomme, C., Morel, J.-B., and Roby, D. 1999. A novel myb oncogene homologue in Arabidopsis thaliana related to hypersensitive cell death. Plant J., 20: 57-66.

    Article  PubMed  CAS  Google Scholar 

  • Dat, J.F., Foyer, C.H., and Scott, I.M. 1998. Changes in Salicylic Acid and Antioxidants during Induced Thermotolerance in Mustard Seedlings. Plant Physiol., 118: 1455-1461.

    Article  CAS  PubMed  Google Scholar 

  • Davletova, S., Rizhsky, L., Liang, H., Shengqiang, Z., Oliver, D.J., Coutu, J., Shulaev, V., Schlauch, K., and Mittler, R. 2005. Cytosolic Ascorbate Peroxidase 1 Is a Central Component of the Reactive Oxygen Gene Network of Arabidopsis. Plant Cell, 17: 268-281.

    Article  PubMed  CAS  Google Scholar 

  • de Leon, I.P., Sanz, A., Hamberg, M., and Castresana, C. 2002. Involvement of the Arabidopsis $α $DOX1 fatty acid dioxygenase in protection against oxidative stress and cell death. Plant J., 29: 61-72.

    Article  PubMed  Google Scholar 

  • Delaney, T.P., Friedrich, L., and Ryals, J.A. 1995. Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance. Proc. Natl. Acad. Sci. USA. 92: 6602-6606.

    Article  PubMed  CAS  Google Scholar 

  • Delaney, T.P., Uknes, S., Vernooij, B., Friedrich, L., and Weymann, K. 1994. A central role of salicylic acid in plant disease resistance. Science, 266: 1247-1250.

    Article  CAS  PubMed  Google Scholar 

  • Despres, C., Chubak, C., Rochon, A., Clark, R., Bethune, T., Desveaux, D., and Fobert, P.R. 2003. The Arabidopsis NPR1 Disease Resistance Protein Is a Novel Cofactor That Confers Redox Regulation of DNA Binding Activity to the Basic Domain/Leucine Zipper Transcription Factor TGA1. Plant Cell, 15: 2181-2191.

    Article  PubMed  CAS  Google Scholar 

  • Despres, C., DeLong, C., Glaze, S., Liu, E., and Fobert, P.R. 2000. The Arabidopsis NPR1/NIM1 Protein Enhances the DNA Binding Activity of a Subgroup of the TGA Family of bZIP Transcription Factors. Plant Cell, 12: 279-290.

    Article  PubMed  CAS  Google Scholar 

  • Desveaux, D., Allard, J., Brisson, N., and Sygusch, J. 2002. Crystallization and preliminary X-ray crystallographic analysis of p24, a component of the potato nuclear factor PBF-2. Acta Cryst. D Biol Cryst., 58: 296-298.

    Article  CAS  Google Scholar 

  • Desveaux, D., Despres, C., Joyeux, A., Subramaniam, R., and Brisson, N. 2000. PBF-2 is a novel single-stranded DNA binding factor implicated in PR-10a gene activation in potato. Plant Cell, 12: 1477-1489.

    Article  PubMed  CAS  Google Scholar 

  • Desveaux, D., Marechal, A., and Brisson, N. 2005. Whirly transcription factors: defense gene regulation and beyond. Tren. Plant Sci., 10: 95-102.

    Article  CAS  Google Scholar 

  • Desveaux, D., Subramaniam, R., Despres, C., Mess, J.-N., Levesque, C., Fobert, P.R., Dangl, J.L., and Brisson, N. 2004. A "Whirly" Transcription Factor Is Required for Salicylic Acid-Dependent Disease Resistance in Arabidopsis. Dev. Cell, 6: 229-240.

    Article  PubMed  CAS  Google Scholar 

  • Dietz, K.-J. 2003. Plant Peroxiredoxins. Annu. Rev. Plant Biol., 54: 93-107.

    Article  PubMed  CAS  Google Scholar 

  • Dixon, D.P., Lapthorn, A., and Edwards, R. 2002. Plant glutathione transferases. Genome Biol, 3: REVIEWS3004.

    Article  PubMed  Google Scholar 

  • Dong, J., Chen, C., and Chen, Z. 2003. Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol. Biol., 51: 21-37.

    Article  PubMed  CAS  Google Scholar 

  • Dong, X. 2004. NPR1, all things considered. Curr. Opin. Plant Biol., 7: 547-552.

    Article  PubMed  CAS  Google Scholar 

  • Draper, J. 1997. Salicylate, superoxide synthesis and cell suicide in plant defence. Tren. Plant Sci., 2: 162-165.

    Article  Google Scholar 

  • Durner, J., and Klessig, D.F. 1996. Salicylic Acid Is a Modulator of Tobacco and Mammalian Catalases. J. Biol. Chem., 271: 28492-28501.

    Article  PubMed  CAS  Google Scholar 

  • Durrant, W.E., and Dong, X. 2004. Systemic Acquired Resistance. Annu. Rev. Phytopath., 42: 185-209.

    Article  CAS  Google Scholar 

  • Dutilleul, C., Garmier, M., Noctor, G., Mathieu, C., Chetrit, P., Foyer, C.H., and de Paepe, R. 2003. Leaf Mitochondria Modulate Whole Cell Redox Homeostasis, Set Antioxidant Capacity, and Determine Stress Resistance through Altered Signaling and Diurnal Regulation. Plant Cell, 15: 1212-1226.

    Article  PubMed  CAS  Google Scholar 

  • Edwards, R., Dixon, D.P., and Walbot, V. 2000. Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health. Tren. Plant Sci., 5: 193-198.

    Article  CAS  Google Scholar 

  • Ekengren, S.K., Liu, Y., Schiff, M., Dinesh-Kumar, S.P., and Martin, G.B. 2003. Two MAPK cascades, NPR1, and TGA transcription factors play a role in Pto-mediated disease resistance in tomato. Plant J., 36: 905-917.

    Article  PubMed  CAS  Google Scholar 

  • Eulgem, T. 2005. Regulation of the Arabidopsis defense transcriptome. Tren.Plant Sci., 10: 71-78.

    Article  CAS  Google Scholar 

  • Eulgem, T., Rushton, P.J., Robatzek, S., and Somssich, I.E. 2000. The WRKY superfamily of plant transcription factors. Tren Plant Sci., 5: 199-206.

    Article  CAS  Google Scholar 

  • Falk, A., Feys, B.J., Frost, L.N., Jones, J.D., Daniels, M.J., and Parker, J.E. 1999. EDS1, an essential component of R gene-mediated disease resistance in Arabidopsis has homology to eukaryotic lipases. Proc. Natl. Acad. Sci. USA. 96: 3292-3297.

    Article  PubMed  CAS  Google Scholar 

  • Fan, W., and Dong, X. 2002. In Vivo Interaction between NPR1 and Transcription Factor TGA2 Leads to Salicylic Acid-Mediated Gene Activation in Arabidopsis. Plant Cell, 14: 1377-1389.

    Article  PubMed  CAS  Google Scholar 

  • Feys, B.J., Moisan, L.J., Newman, M.A., and Parker, J.E. 2001. Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4. Embo J., 20: 5400-5411.

    Article  PubMed  CAS  Google Scholar 

  • Finkemeier, I., Goodman, M., Lamkemeyer, P., Kandlbinder, A., Sweetlove, L.J., and Dietz, K.-J. 2005. The Mitochondrial Type II Peroxiredoxin F Is Essential for Redox Homeostasis and Root Growth of Arabidopsis thaliana under Stress. J. Biol. Chem., 280: 12168-12180.

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald, H.A., Canlas, P.E., Chern, M.S., and Ronald, P.C. 2005. Alteration of TGA factor activity in rice results in enhanced tolerance to Xanthomonas oryzae pv. oryzae. Plant J., 43: 335-347.

    Article  PubMed  CAS  Google Scholar 

  • Fobert, P.R., and Despres, C. 2005. Redox control of systemic acquired resistance. Curr. Opin. Plant Biol., 8: 378-382.

    Article  PubMed  CAS  Google Scholar 

  • Foley, R.C., and Singh, K.B. 2004. TGA5 acts as a positive and TGA4 acts as a negative regulator of ocs element activity in Arabidopsis roots in response to defence signals. FEBS Lett., 563: 141-145.

    Article  PubMed  CAS  Google Scholar 

  • Foyer, C.H., and Noctor, G. 2005. Redox Homeostasis and Antioxidant Signaling: A Metabolic Interface between Stress Perception and Physiological Responses. Plant Cell, 17: 1866-1875.

    Article  PubMed  CAS  Google Scholar 

  • Friedrich, L., Lawton, K., Dietrich, R., Willits, M., Cade, R., and Ryals, J. 2001. NIM1 overexpression in Arabidopsis potentiates plant disease resistance and results in enhanced effectiveness of fungicides. Mol Plant Micro. Int., 14: 1114-1124.

    Article  CAS  Google Scholar 

  • Gaffney, T., Friedrich, L., Vernooij, B., Negrotto, D., Nye, G., Uknes, S., Ward, E., Kessmann, H., and Ryals, J. 1993. Requirement of salicylic acid for the induction of systemic acquired resistance. Science, 250: 754-756.

    Article  Google Scholar 

  • Garreton, V., Carpinelli, J., Jordana, X., and Holuigue, L. 2002. The as-1 Promoter Element Is an Oxidative Stress-Responsive Element and Salicylic Acid Activates It via Oxidative Species. Plant Physiol., 130: 1516-1526.

    Article  PubMed  CAS  Google Scholar 

  • Glazebrook, J. 2001. Genes controlling expression of defense responses in Arabidopsis – 2001 status. Curr. Opin.Plant Biol., 4: 301-308.

    Article  PubMed  CAS  Google Scholar 

  • Glazebrook, J. 2005. Contrasting Mechanisms of Defense Against Biotrophic and Necrotrophic Pathogens. Annu. Rev. Phytopath., 43: 9.1-9.13.

    Google Scholar 

  • Glazebrook, J., Chen, W., Estes, B., Chang, H.-S., Nawrath, C., Metraux, J.-P., Zhu, T., and Katagiri, F. 2003. Topology of the network integrating salicylate and jasmonate signal transduction derived from global expression phenotyping. Plant J., 34: 217-228.

    Article  PubMed  CAS  Google Scholar 

  • Glazebrook, J., Rogers, E.E., and Ausubel, F.M. 1996. Isolation of Arabidopsis Mutants With Enhanced Disease Susceptibility by Direct Screening. Genetics, 143: 973-982.

    PubMed  CAS  Google Scholar 

  • Grant, J.J., and Loake, G.J. 2000. Role of Reactive Oxygen Intermediates and Cognate Redox Signaling in Disease Resistance. Plant Physiol., 124: 21-30.

    Article  PubMed  CAS  Google Scholar 

  • Hartmann, U., Sagasser, M., Mehrtens, F., Stracke, R., and Weisshaar, B. 2005. Differential combinatorial interactions of cis}-acting elements recognized by R2R3-MYB, BZIP, and BHLH factors control light-responsive and tissue-specific activation of phenylpropanoid biosynthesis genes. Plant Mole. Biol., 57: 155-171.

    Article  CAS  Google Scholar 

  • Hepworth, S.R., Zhang, Y., McKim, S., Li, X.,, and Haughn, G.W. 2005. BLADE-ON-PETIOLE-Dependent Signaling Controls Leaf and Floral Patterning in Arabidopsis. Plant Cell, 17: 1434-1448.

    Article  PubMed  CAS  Google Scholar 

  • Hidalgo, P., Garreton, V., Berrios, C.G., Ojeda, H., Jordana, X., and Holuigue, L. 2001. A Nuclear Casein Kinase 2 Activity Is Involved in Early Events of Transcriptional Activation Induced by Salicylic Acid in Tobacco. Plant Physiol., 125: 396-405.

    Article  PubMed  CAS  Google Scholar 

  • Hiraga, S., Sasaki, K., Ito, H., Ohashi, Y., and Matsui, H. 2001. A Large Family of Class III Plant Peroxidases. Plant Cell Physiol., 42: 462-468.

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann-Sommergruber, K. 2002. Pathogenesis-related (PR)-proteins identified as allergens. Biochem. Soc. Trans., 30: 930-935.

    Article  PubMed  CAS  Google Scholar 

  • Hong, Z., Zhang, Z, Olson, J., and Verma D. 2001. A Novel UDP-Glucose Transferase Is Part of the Callose Synthase Complex and Interacts with Phragmoplastin at the Forming Cell Plate. Plant Cell, 13: 769-779.

    Article  PubMed  CAS  Google Scholar 

  • Horvath, D.M., Huang, D.J., and Chua, N.H. 1998. Four classes of salicylate-induced tobacco genes. Mol Plant Micro. Inter., 11: 895-905.

    Article  CAS  Google Scholar 

  • Ichimura, K. 2000. Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6. Plant J., 24: 655-665.

    Article  PubMed  CAS  Google Scholar 

  • Jabs, T., Dietrich, R.A., and Dangl, J.L. 1996. Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science, 273: 1853-1856.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, R.G., Lim, E.-K., Li, Y., Kowalczyk, M., Sandberg, G., Hoggett, J., Ashford, D.A., and Bowles, D.J. 2001. Identification and Biochemical Characterization of an Arabidopsis Indole-3-acetic Acid Glucosyltransferase. J. Biol. Chem., 276: 4350-4356.

    Article  PubMed  CAS  Google Scholar 

  • Jacquot, J.-P., Gelhaye, E., Rouhier, N., Corbier, C., Didierjean, C., and Aubry, A. 2002. Thioredoxins and related proteins in photosynthetic organisms: molecular basis for thiol dependent regulation. Biochem. Pharm., 64: 1065-1069.

    Article  PubMed  CAS  Google Scholar 

  • Jakoby, M., Weisshaar, B., Droge-Laser, W., Vicente-Carbajosa, J., Tiedemann, J., Kroj, T., and Parcy, F. 2002. bZIP transcription factors in Arabidopsis. Tren. Plant Scie., 7: 106-111.

    Article  CAS  Google Scholar 

  • Jin, H., Cominelli, E., Bailey, P., Parr, A., Mehrtens, F., Jones, J., Tonelli, C., Weisshaar, B., and Martin, C. 2000. Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis. EMBO J., 19: 6150-6161.

    Article  PubMed  CAS  Google Scholar 

  • Jirage, D., Tootle, T.L., Reuber, T.L., Frost, L.N., Feys, B.J., Parker, J.E., Ausubel, F.M., and Glazebrook, J. 1999. Arabidopsis thaliana PAD4 encodes a lipase-like gene that is important for salicylic acid signaling. Proc. Natl. Acad. Sci. USA. 96: 13583-13588.

    Article  PubMed  CAS  Google Scholar 

  • Jirage, D., Zhou, N., Cooper, B., Clarke, J.D., Dong, X., and Glazebrook, J. 2001. Constitutive salicylic acid-dependent signaling in cpr1 and cpr6 mutants requires PAD4. Plant J., 26: 395-407.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, C., Boden, E., and Arias, J. 2003. Salicylic Acid and NPR1 Induce the Recruitment of trans-Activating TGA Factors to a Defense Gene Promoter in Arabidopsis. Plant Cell, 15: 1846-1858.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, C., Boden, E., Desai, M., Pascuzzi, P., and Arias, J. 2001. In vivo target promoter-binding activities of a xenobiotic stress-activated TGA factor. Plant J., 28: 237-243.

    Article  PubMed  CAS  Google Scholar 

  • Joo, J.H., Wang, S., Chen, J.G., Jones, A.M., and Fedoroff, N.V. 2005. Different Signaling and Cell Death Roles of Heterotrimeric G Protein {α} and {β} Subunits in the Arabidopsis Oxidative Stress Response to Ozone. Plant Cell, 17: 957-970.

    Article  PubMed  CAS  Google Scholar 

  • Kalde, M., Barth, M., Somssich, I., and Lippok, B. 2003. Members of the Arabidopsis WRKY group III transcription factors are part of different plant defense signaling pathways. Mole. Plant Micro. Inter., 16: 295-305.

    Article  CAS  Google Scholar 

  • Kampranis, S., Damianova, R., Atallah, M., Toby, G., Kondi, G., Tsichlis, P.N., and Makris, A.M., 2000. A Novel Plant Glutathione S-Transferase/Peroxidase Suppresses Bax Lethality in Yeast. J. Biol.Chem., 275: 29207-29216.

    Article  PubMed  CAS  Google Scholar 

  • Kang, H.-G., and Klessig, D.F. 2005. Salicylic acid-inducible Arabidopsis} CK2-like activity phosphorylates TGA2. Plant Mole. Biol., 57: 541-557.

    Article  CAS  Google Scholar 

  • Katagiri, F., Lam, E., and Chua, N.-H. 1989. Two tobacco DNA-binding proteins with homology to the nuclear factor CREB. Nature, 340: 727-730.

    Article  PubMed  CAS  Google Scholar 

  • Katagiri, F., Seipel, K., and Chua, N.H. 1992. Identification of a novel dimer stabilization region in a plant bZIP transcription activator. Mol. Cell. Biol., 12: 4809-4816.

    PubMed  CAS  Google Scholar 

  • Kawano, T. 2003. Roles of the reactive oxygen species-generating peroxidase reactions in plant defense and growth induction. Plant Cell Rep., 21: 829-837.

    PubMed  CAS  Google Scholar 

  • Kawano, T., Pinontoan, R., Uozumi, N., Morimitsu, Y., Miyake, C., Asada, K., and Muto, S. 2000. Phenylethylamine-Induced Generation of Reactive Oxygen Species and Ascorbate Free Radicals in Tobacco Suspension Culture: Mechanism for Oxidative Burst Mediating Ca2+ Influx. Plant Cell Physiol., 41: 1259-1266.

    Article  PubMed  CAS  Google Scholar 

  • Keegstra, K., and Raikhel, N. 2001 Plant glycosyltransferases. Curr. Opin. Plant Biol}., 4: 219-224.

    Article  PubMed  CAS  Google Scholar 

  • Kegler, C., Lenk, I., Krawczyk, S., Scholz, R., and Gatz, C. 2004. Functional characterization of tobacco transcription factor TGA2.1. Plant Mol. Biol., 55: 153-164

    Article  PubMed  CAS  Google Scholar 

  • Kilili, K.G., Atanassova, N., Vardanyan, A., Clatot, N., Al-Sabarna, K., Kanellopoulos, P.N., Makris, A.M., and Kampranis, S.C. 2004. Differential Roles of Tau Class Glutathione S-Transferases in Oxidative Stress. J. Biol. Chem.., 279: 24540-24551.

    Article  PubMed  CAS  Google Scholar 

  • Kim, H.S., and Delaney, T.P. 2002. Over-expression of TGA5, which encodes a bZIP transcription factor that interacts with NIM1/NPR1, confers SAR-independent resistance in Arabidopsis thaliana to Peronospora parasitica. Plant J., 32: 151-163.

    Article  PubMed  CAS  Google Scholar 

  • Kinkema, M., Fan, W., and Dong, X. 2000. Nuclear Localization of NPR1 Is Required for Activation of PR Gene Expression. Plant Cell, 12: 2339-2350.

    Article  PubMed  CAS  Google Scholar 

  • Klessig, D.F., Durner, J., Noad, R., Navarre, D.A., Wendehenne, D., Kumar, D., Zhou, J.M., Shah, J., Zhang, S., Kachroo, P., Trifa, Y., Pontier, D., Lam, E., and Silva, H. 2000. Nitric oxide and salicylic acid signaling in plant defense. Proc. Natl. Acad. Sci. USA. 97: 8849-8855.

    Article  PubMed  CAS  Google Scholar 

  • Klinedinst, S., Pascuzzi, P., Redman, J., Desai, M., and Arias, J. 2000. A xenobiotic-stress-activated transcription factor and its cognate target genes are preferentially expressed in root tip meristems. Plant Mol. Biol., 42: 679-688.

    Article  PubMed  CAS  Google Scholar 

  • Krawczyk, S., Thurow, C., Niggeweg, R., and Gatz, C. 2002. Analysis of the spacing between the two palindromes of activation sequence-1 with respect to binding to different TGA factors and transcriptional activation potential. Nucl. Acids Res., 30: 775-781.

    Article  PubMed  CAS  Google Scholar 

  • Kreps, J.A., Wu, Y., Chang, H.-S., Zhu, T., Wang, X., and Harper, J.F. 2002. Transcriptome Changes for Arabidopsis in Response to Salt, Osmotic, and Cold Stress. Plant Physiol., 130: 2129-2141.

    Article  PubMed  CAS  Google Scholar 

  • Lam, E., Benfey, P.N., Gilmartin, P.M., Fang, R.X., and Chua, N.H. 1989. Site-specific mutations alter in vitro factor binding and change promoter expression pattern in transgenic plants. Proc. Natl. Acad. Sci. USA. 86: 7890-7894.

    Article  PubMed  CAS  Google Scholar 

  • Lam, E., Kato, N., and Lawton, M. 2001. Programmed cell death, mitochondria and the plant hypersensitive response. Nature, 411: 848-853.

    Article  PubMed  CAS  Google Scholar 

  • Lam, E., and Lam, Y. 1995. Binding site requirements and differential representation of TGF factors in nuclear ASF-1 activity. Nucl. Acids Res., 23: 3778-3785.

    Article  PubMed  CAS  Google Scholar 

  • Larkindale, J., and Knight, M. 2002. Protection against Heat Stress-Induced Oxidative Damage in Arabidopsis Involves Calcium, Abscisic Acid, Ethylene, and Salicylic Acid. Plant Physiol., 128: 682-695.

    Article  PubMed  CAS  Google Scholar 

  • Lebel, E., Heifetz, P., Thorne, L., Uknes, S., Ryals, J., and Ward, E. 1998. Functional analysis of regulatory sequences controlling PR-1 gene expression in Arabidopsis. Plant J., 16: 223-233.

    Article  PubMed  CAS  Google Scholar 

  • Lee, H.-i.,, and Raskin, I. 1999. Purification, Cloning, and Expression of a Pathogen Inducible UDP-glucose:Salicylic Acid Glucosyltransferase from Tobacco. J. Biol. Chem., 274: 36637-36642.

    Article  PubMed  CAS  Google Scholar 

  • Lee, K.-t., Hirano, H., Yamakawa, T., Kodama, T., Igarashi, Y.,, and Shimomura, K. 2001a. Responses of transformed root culture of Atropa belladonna to salicylic acid stress. J. Biosci. Bioeng., 91: 586-589.

    Article  CAS  Google Scholar 

  • Lee, M., Qi, M., and Yang, Y. 2001b. A novel jasmonic acid-inducible rice myb gene associates with fungal infection and host cell death. Mol Plant Micro. Inter., 14: 527-535.

    Article  CAS  Google Scholar 

  • Lemaire, S.D., Guillon, B., Le Marechal, P., Keryer, E., Miginiac-Maslow, M., and Decottignies, P. 2004. New thioredoxin targets in the unicellular photosynthetic eukaryote Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA. 101: 7475-7480.

    Article  PubMed  CAS  Google Scholar 

  • Leon, J., Lawton, M.A., and Raskin, I. 1995. Hydrogen Peroxide Stimulates Salicylic Acid Biosynthesis in Tobacco. Plant Physiol., 108: 1673-1678.

    PubMed  CAS  Google Scholar 

  • Li, J., and al, e. 2004. The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell, 16: 319-331.

    Article  PubMed  CAS  Google Scholar 

  • Li, X., Zhang, Y., Clarke, J.D., Li, Y., and Dong, X. 1999. Identification and cloning of a negative regulator of systemic acquired resistance, SNI1, through a screen for suppressors of npr1-1. Cell, 98: 329-339.

    Article  PubMed  CAS  Google Scholar 

  • Li, Y., Baldauf, S., Lim, E.K., and Bowles, D.J. 2001. Phylogenetic analysis of the UDP-glycosyltransferase multigene family of Arabidopsis thaliana. J Biol. Chem., 276: 4338-4343.

    Article  PubMed  CAS  Google Scholar 

  • Lin, W.-C., Lu, C.-F., Wu, J.-W., Cheng, M.-L., Lin, Y.-M., Yang, N.-S., Black, L., Green, S.K., Wang, J.-F., and Cheng, C.-P. 2004. Transgenic tomato plants expressing the Arabidopsis NPR1}gene display enhanced resistance to a spectrum of fungal and bacterial diseases. Trans. Res., 13: 567-581.

    Article  CAS  Google Scholar 

  • Liu, G., Holub, E.B., Alonso, J.M., Ecker, J.R., and Fobert, P.R. 2005. An Arabidopsis NPR1-like gene, NPR4, is required for disease resistance. Plant J., 41: 304-318.

    Article  PubMed  CAS  Google Scholar 

  • Liu, X., and Lam, E. 1994. Two binding sites for the plant transcription factor ASF-1 can respond to auxin treatments in transgenic tobacco. J. Biol. Chem., 269: 668-675.

    PubMed  CAS  Google Scholar 

  • Liu, Y., Schiff, M., Marathe, R., and Dinesh-Kumar, S.P. 2002. Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J., 30: 415-429.

    Article  PubMed  CAS  Google Scholar 

  • Loyall, L., Uchida, K., Braun, S., Furuya, M., and Frohnmeyer, H. 2000. Glutathione and a UV Light-Induced Glutathione S-Transferase Are Involved in Signaling to Chalcone Synthase in Cell Cultures. Plant Cell, 12: 1939-1950.

    Article  PubMed  CAS  Google Scholar 

  • Malamy, J., Carr, J.P., Klessig, D.F., and Raskin, I. 1990. Salicylic acid: a likely endogenous signal in the resistance response of tobacco to viral infection. Science, 250: 1002-1004.

    Article  CAS  PubMed  Google Scholar 

  • Maleck, K., Levine, A., Eulgem, T., Morgan, A., Schmid, J., Lawton, K.A., Dangl, J.L., and Dietrich, R.A. 2000. The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat. Genet., 26: 403-410.

    Article  PubMed  CAS  Google Scholar 

  • Marchand, C., Le Marechal, P., Meyer, Y., Miginiac-Maslow, M., Issakidis-Bourguet, E., and Decottignies, P. 2004. New targets of Arabidopsis thioredoxins revealed by proteomic analysis. Proteomics, 4: 2696-2706.

    Article  PubMed  CAS  Google Scholar 

  • Marrs, K.A. 1996. The Functions and Regulation of Glutathione S-transferases in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol., 47: 127-158.

    Article  PubMed  CAS  Google Scholar 

  • Mateo, A., Muhlenbock, P., Rusterucci, C., Chang, C.C., Miszalski, Z., Karpinska, B., Parker, J.E., Mullineaux, P.M., and Karpinski, S. 2004. Lesion Simulating Disease 1 is required for acclimation to conditions that promote excess excitation energy. Plant Physiol., 136: 2818-2830.

    Article  PubMed  CAS  Google Scholar 

  • Maxwell, D.P., Nickels, R., and McIntosh, L. 2002. Evidence of mitochondrial involvement in the transduction of signals required for the induction of genes associated with pathogen attack and senescence. Plant J., 29: 269-279.

    Article  PubMed  CAS  Google Scholar 

  • Maxwell, D.P., Wang, Y., and McIntosh, L. 1999. The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells. Proc. Natl. Acad. Sci. USA. 96: 8271-8276.

    Article  PubMed  CAS  Google Scholar 

  • Mehrtens, F., Kranz, H., Bednarek, P., and Weisshaar, B. 2005. The Arabidopsis Transcription Factor MYB12 Is a Flavonol-Specific Regulator of Phenylpropanoid Biosynthesis. Plant Physiol., 138: 1083-1096.

    Article  PubMed  CAS  Google Scholar 

  • Metraux, J.-P. 2002. Recent breakthroughs in the study of salicylic acid biosynthesis. Tren.Plant Sci., 7: 332-334.

    Article  CAS  Google Scholar 

  • Miao, Z., Liu, X., and Lam, E. 1994. TGA3 is a distinct member of the TGA family of bZIP transcription factors in Arabidopsis thaliana. Plant Mo. Biol., 25: 1-11.

    Article  Google Scholar 

  • Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Tren. Plant Sci., 7: 405-410.

    Article  CAS  Google Scholar 

  • Morris, K., -Mackerness, S.A.-H., Page, T., John, C.F., Murphy, A.M., Carr, J.P., and Buchanan-Wollaston, V. 2000. Salicylic acid has a role in regulating gene expression during leaf senescence. Plant J., 23: 677-685.

    Article  PubMed  CAS  Google Scholar 

  • Mou, Z., Fan, W., and Dong, X. 2003. Inducers of Plant Systemic Acquired Resistance Regulate NPR1 Function through Redox Changes. Cell, 113: 935-944.

    Article  PubMed  CAS  Google Scholar 

  • Mur, L.A., Kenton, P., and Draper, J. 2005. In planta} measurements of oxidative bursts elicited by avirulent and virulent bacterial pathogens suggestes that H$2$O$2$ is insufficient to elicit cell death in tobacco. Plant Cell Environ., 28: 548-561.

    Article  CAS  Google Scholar 

  • Narusaka, Y., Narusaka, M., Seki, M., Umezawa, T., Ishida, J., Nakajima, M., Enju, A., and Shinozaki, K. 2004. Crosstalk in the responses to abiotic and biotic stresses in Arabidopsis Analysis of gene expression in cytochrome P450 gene superfamily by cDNA microarray. Plant Mol. Biol., 55: 327-342.

    Article  PubMed  CAS  Google Scholar 

  • Nawrath, C., Heck, S., Parinthawong, N., and Metraux, J.-P. 2002. EDS5, an Essential Component of Salicylic Acid-Dependent Signaling for Disease Resistance in Arabidopsis, Is a Member of the MATE Transporter Family. Plant Cell, 14: 275-286.

    Article  PubMed  CAS  Google Scholar 

  • Neuenschwander, U., Vernooij, B., Friedrich, L., Uknes, S., Kessmann, H., and Ryals, J. 1995. Is hidrogen peroxide a second messenger of salicylic acid in systemic acquired resistance? Plant J., 8: 227-233.

    Article  CAS  Google Scholar 

  • Neuhaus, G., Neuhaus-Url, G., Katagiri, F., Seipel, K., and Chua, N.H. 1994. Tissue-Specific Expression of as-1 in Transgenic Tobacco. Plant Cell, 6: 827-834.

    Article  PubMed  CAS  Google Scholar 

  • Niefind, K., Guerra, B., Pinna, L., Issinger, O., and Schomburg, D. 1998. Crystal structure of the catalytic subunit of protein kinase CK2 from Zea mays at 2.1 Å resolution. EMBO J., 17: 2451-2462.

    Article  PubMed  CAS  Google Scholar 

  • Niggeweg, R., Thurow, C., Kegler, C., and Gatz, C. 2000a. Tobacco Transcription Factor TGA2.2 Is the Main Component of as-1-binding Factor ASF-1 and Is Involved in Salicylic Acid- and Auxin-inducible Expression of as-1-containing Target Promoters. J. Biol. Chem., 275: 19897-19905.

    Article  CAS  Google Scholar 

  • Niggeweg, R., Thurow, C., Weigel, R., Pfitzner, U., and Gatz, C. 2000b. Tobacco TGA factors differ with respect to interaction with NPR1, activation potential and DNA-binding properties. Plant Mol. Biol., 42: 775-788.

    Article  CAS  Google Scholar 

  • O’Donnell, P.J., Truesdale, Mark R., Calvert, Caroline M., Dorans, Alison, Roberts, Michael R., and Bowles, D. J. 1998. A novel tomato gene that rapidly responds to wound and pathogenrelated signals. Plant J., 14: 137-142.

    Article  PubMed  CAS  Google Scholar 

  • Orozco-Cardenas, M.L., Narvaez-Vasquez, J., and Ryan, C.A. 2001. Hydrogen Peroxide Acts as a Second Messenger for the Induction of Defense Genes in Tomato Plants in Response to Wounding, Systemin, and Methyl Jasmonate. Plant Cell, 13: 179-191.

    Article  PubMed  CAS  Google Scholar 

  • Overmyer, K., Brosche, M., and Kangasjarvi, J. 2003. Reactive oxygen species and hormonal control of cell death. Tren. Plant Sci., 8: 335-342.

    Article  CAS  Google Scholar 

  • Pascuzzi, P., Hamilton, D., Bodily, K., and Arias, J. 1998. Auxin-induced stress potentiates trans-activation by a conserved plant basic/leucine-zipper factor. J. Biol. Chem., 273: 26631-26637.

    Article  PubMed  CAS  Google Scholar 

  • Pasqualini, S., Della Torre, G., Ferranti, F., Ederli, L., Piccioni, C., Reale, L., and Antonielli, M. 2002. Salicylic acid modulates ozone-induced hypersensitive cell death in tobacco plants. Physiol. Plant., 115: 204-212.

    Article  PubMed  CAS  Google Scholar 

  • Pasqualini, S., Piccioni, C., Reale, L., Ederli, L., Della Torre, G., and Ferranti, F. 2003. Ozone-Induced Cell Death in Tobacco Cultivar Bel W3 Plants. The Role of Programmed Cell Death in Lesion Formation. Plant Physiol., 133: 1122-1134.

    Article  PubMed  CAS  Google Scholar 

  • Peracchia, G., Jensen, A.B., Culianez-Macia, F.A., Grosset, J., Goday, A., Issinger, O.-G., and Pages, M. 1999. Characterization, subcellular localization and nuclear targeting of casein kinase 2 from Zea mays. Plant Mol. Biol., 40: 199-211.

    Article  PubMed  CAS  Google Scholar 

  • Petersen, M., Mundy, J., and otros. 2000. Arabidopsis map kinase 4 negatively regulates systemic acquired resistance. Cell, 103: 1111-1120.

    Article  PubMed  CAS  Google Scholar 

  • Pieterse, C.M., and Van Loon, L. 2004. NPR1: the spider in the web of induced resistance signaling pathways. Curr. Opin. Plant Biol., 7: 456-464.

    Article  PubMed  CAS  Google Scholar 

  • Pieterse, C.M., van Wees, S.C., van Pelt, J.A., Knoester, M., Laan, R., Gerrits, H., Weisbeek, P.J., and van Loon, L.C. 1998. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell, 10: 1571-1580.

    Article  PubMed  CAS  Google Scholar 

  • Pontier, D., Miao, Z.H., and Lam, E. 2001. Trans-dominant suppression of plant TGA factors reveals their negative and positive roles in plant defense responses. Plant J., 27: 529-538.

    Article  PubMed  CAS  Google Scholar 

  • Pontier, D., Privat, I., Trifa, Y., Zhou, J.M., Klessig, D.F., and Lam, E. 2002. Differential regulation of TGA transcription factors by post-transcriptional control. Plant J., 32: 641-653.

    Article  PubMed  CAS  Google Scholar 

  • Pylatuik, J., and Fobert, P.R. 2005. Comparison of transcript profiling on Arabidopsis microarray platform technologies. Plant Mol. Biol., 58: 609-624.

    Article  PubMed  CAS  Google Scholar 

  • Qin, X.F., Holuigue, L., Horvath, D.M., and Chua, N.H. 1994. Immediate Early Transcription Activation by Salicylic Acid via the Cauliflower Mosaic Virus as-1 Element. Plant Cell, 6: 863-874.

    Article  PubMed  CAS  Google Scholar 

  • Rao, M.V., and Davis, K.R. 1999. Ozone-induced cell death occurs via two distinct mechanisms in Arabidopsis: the role of salicylic acid. Plant J., 17: 603-614.

    Article  PubMed  CAS  Google Scholar 

  • Rao, M.V., Paliyath, G., Ormrod, D.P., Murr, D.P., and Watkins, C.B. 1997. Influence of Salicylic Acid on H2O2 Production, Oxidative Stress, and H2O2-Metabolizing Enzymes (Salicylic Acid-Mediated Oxidative Damage Requires H2O2). Plant Physiol., 115: 137-149.

    Article  PubMed  CAS  Google Scholar 

  • Rhee, S.Y., Beavis, W., Berardini, T.Z., Chen, G., Dixon, D., Doyle, A., Garcia-Hernandez, M., Huala, E., Lander, G., Montoya, M., Miller, N., Mueller, L.A., Mundodi, S., Reiser, L., Tacklind, J., Weems, D.C., Wu, Y., Xu, I., Yoo, D., Yoon, J., and Zhang, P. 2003. The Arabidopsis Information Resource (TAIR): a model organism database providing a centralized, curated gateway to Arabidopsis biology, research materials and community. Nucl. Acids Res., 31: 224-228.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, M.R., Darby, R., Lim, E.K., Draper, J., Boeles, D.J., 1999. Differential regulation of a glucosyl transferase gene homologue during defence responses in tobacco. J. Exp. Bot., 50: 407-410.

    Article  CAS  Google Scholar 

  • Romeis, T., Piedras, P., Zhang, S., Klessig, D., Hirt, H., and Jones, J. 1999. Rapid Avr9- and Cf-9 -dependent activation of MAP kinases in tobacco cell cultures and leaves: convergence of resistance gene, elicitor, wound, and salicylate responses. Plant Cell, 11: 273-287.

    Article  PubMed  CAS  Google Scholar 

  • Ross, J., Li, Y., Lim, E.-K., and Bowles, D. 2001. Higher plant glycosyltransferases. Gen. Biol., 2: reviews 3004.3001 - reviews3004.3006.

    Google Scholar 

  • Rouhier, N., Gelhaye, E., Gualberto, J.M., Jordy, M.-N., De Fay, E., Hirasawa, M., Duplessis, S., Lemaire, S.D., Frey, P., Martin, F., Manieri, W., Knaff, D.B., and Jacquot, J.-P. 2004. Poplar Peroxiredoxin Q. A Thioredoxin-Linked Chloroplast Antioxidant Functional in Pathogen Defense. Plant Physiol., 134: 1027-1038.

    Article  PubMed  CAS  Google Scholar 

  • Rouhier, N., Gelhaye, E., Sautiere, P.-E., Brun, A., Laurent, P., Tagu, D., Gerard, J., de Fay, E., Meyer, Y., and Jacquot, J.-P. 2001. Isolation and Characterization of a New Peroxiredoxin from Poplar Sieve Tubes That Uses Either Glutaredoxin or Thioredoxin as a Proton Donor. Plant Physiol., 127: 1299-1309.

    Article  PubMed  CAS  Google Scholar 

  • Roxas, V., Smith, R.K. Jr,, Allen, E.R., Allen, R.D., 1997. Overexpression of glutathione S-transferase/glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress. Nature Biotech., 15: 988-991.

    Article  CAS  Google Scholar 

  • Rusterucci, C., Aviv, D.H., Holt, B.F., 3rd, Dangl, J.L., and Parker, J.E. 2001. The disease resistance signaling components EDS1 and PAD4 are essential regulators of the cell death pathway controlled by LSD1 in Arabidopsis. Plant Cell, 13: 2211-2224.

    Article  PubMed  CAS  Google Scholar 

  • Salinas, P., Bantignies, B., Tapia, J., Jordana, X., and Holuigue, L. 2001. Cloning and characterization of the cDNA coding for the catalytic alpha subunit of CK2 from tobacco. Mol Cell Biochem., 227: 120-135.

    Article  Google Scholar 

  • Sandermann, H.J. 1992. Plant metabolism of xenobiotics. Trends Biochem. Sci., 17: 82-84.

    Article  PubMed  CAS  Google Scholar 

  • Sappl, P.G., Onate-Sanchez, L., Singh, K.B., and Millar, A.H. 2004. Proteomic analysis of glutathione S -transferases of Arabidopsis thaliana reveals differential salicylic acid-induced expression of the plant-specific phi and tau classes. Plant Mol. Biol., 54: 205-219.

    Article  PubMed  CAS  Google Scholar 

  • Schiermeyer, A., Thurow, C., and Gatz, C. 2003. Tobacco bZIP factor TGA10 is a novel member of the TGA family of transcription factors. Plant Mol. Biol., 51: 817-829.

    Article  PubMed  CAS  Google Scholar 

  • Schoenbohm, C., Martens S., Eder, C., Forkmann, G., Weisshaar, B., 2000. Identification of the Arabidopsis thaliana flavonoid 3’-hydroxylase gene and functional expression of the encoded P450 enzyme. Biol. Chem., 381: 749-753.

    Article  PubMed  CAS  Google Scholar 

  • Schuler, M.A., and Werck-Reichhart, D. 2003. Functional Genomics of P450S. Annu. Rev. Plant Biol., 54: 629-667.

    Article  PubMed  CAS  Google Scholar 

  • Scott, I.M., Clarke, S.M., Wood, J.E., and Mur, L.A.J. 2004. Salicylate Accumulation Inhibits Growth at Chilling Temperature in Arabidopsis. Plant Physiol., 135: 1040-1049.

    Article  PubMed  CAS  Google Scholar 

  • Shah, J. 2005. Lipids, Lipases, and Lipid-Modifying Enzymes in Plant Disease Resistance. Annu Rev Phytopathol. 43: 229-260.

    Article  PubMed  CAS  Google Scholar 

  • Shah, J., Tsui, F., and Klessig, D.F. 1997. Characterization of a salicylic acid-insensitive mutant (sai1) of Arabidopsis thaliana, identified in a selective screen utilizing the SA-inducible expression of the tms2 gene. Mol Plant Microbe Interact., 10: 69-78.

    Article  PubMed  CAS  Google Scholar 

  • Speir, E., Yu, Z.-X., Ferrans, V.J., Huang, E.-S., and Epstein, S.E. 1998. Aspirin Attenuates Cytomegalovirus Infectivity and Gene Expression Mediated by Cyclooxygenase-2 in Coronary Artery Smooth Muscle Cells. Circ. Res., 83: 210-216.

    PubMed  CAS  Google Scholar 

  • Stracke, R., Weber, M., and Wagner, B. 2001. The R2R3-MYB gene family in Arabidopsis thaliana. Curr. Opin. Plant Biol., 4: 447-456.

    Article  PubMed  CAS  Google Scholar 

  • Strompen, G., Gruner, R., and Pfitzner, U.M. 1998. An as-1-like motif controls the level of expression of the gene for the pathogenesis-related protein 1a from tobacco. Plant Mol. Biol., 37: 871-883.

    Article  PubMed  CAS  Google Scholar 

  • Subramaniam, R., Desveaux, D., Spickler, C., Michnick, S.W., and Brisson, N. 2001. Direct visualization of protein interactions in plant cells. Nature Biotech., 19: 769-772.

    Article  CAS  Google Scholar 

  • Sugimoto, K., Takeda, S., and Hirochika, H. 2000. MYB-Related Transcription Factor NtMYB2 Induced by Wounding and Elicitors is a Regulator of the Tobacco Retrotransposon Tto1 and Defense-Related Genes. Plant Cell, 12: 2511-2528.

    Article  PubMed  CAS  Google Scholar 

  • Surplus, S.L., Jordan, B.R., Murphy, A.M., Carr, J.P., Thomas, B., and Mackerness, S.A.H. 1998. Ultraviolet-B-induced responses in Arabidopsis thaliana: role of salicylic acid and reactive oxygen species in the regulation of transcripts encoding photosynthetic and acidic pathogenesis-related proteins. Plant Cell Environ., 21: 685-694.

    Article  CAS  Google Scholar 

  • Thurow, C., Schiermeyer, A., Krawczyk, S., Butterbrodt, T., Nickolov, K., and Gatz, C. 2005. Tobacco bZIP transcription factor TGA2.2 and related factor TGA2.1 have distinct roles in plant defense responses and plant development. Plant J., 44: 100-113.

    Article  PubMed  CAS  Google Scholar 

  • Tohge, T., Nishiyama, Y., Yokota Hirai, M., Yano, M., Nakajim, J., Awazuhara, M., Inoue, E., Takahashi, H., Goodenowe, D., Kitayama, M., Noji, M., Yamazaki, M., and Saito, K. 2005. Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant J. 42: 218-235.

    Article  PubMed  CAS  Google Scholar 

  • Uknes, S., Dincher, S., Friedrich, L., Negrotto, D., Williams, S., Thompson-Taylor, H., Potter, S., Ward, E., and Ryals, J. 1993. Regulation of pathogenesis-related protein-1a gene expression in tobacco. Plant Cell, 5: 159-169.

    Article  PubMed  CAS  Google Scholar 

  • Ulmasov, T., Hagen, G., and Guilfoyle, T. 1994. The ocs element in the soybean GH2/4 promoter is activated by both active and inactive auxin and salicylic acid analogues. Plant Mol. Biol., 26: 1055-1064.

    Article  PubMed  CAS  Google Scholar 

  • Uquillas, C., Letelier, I., Blanco, F., Jordana, X., and Holuigue, L. 2004. NPR1-independent activation of immediate early salicylic acid-responsive genes in Arabidopsis. Mol. Plant Microbe Interact., 17: 34-42.

    Article  PubMed  CAS  Google Scholar 

  • Van Camp, W., Capiau, K., Van Montagu, M., Inze, D., and Slooten, L. 1996. Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe-superoxide dismutase in chloroplasts. Plant Physiol., 112: 1703-1714.

    Article  PubMed  Google Scholar 

  • Van Lonn, L.C., and Van Strien, E.A. 1999. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol. Mol. Plant Path., 55: 85-97.

    Article  Google Scholar 

  • Van Loon LC, v.K.A. 1970. Polyacrylamide disc electrophoresis of the soluble leaf proteins from Nicotiana tabacum var. "Samsun" and "Samsun NN". II. Changes in protein constitution after infection with tobacco mosaic virus. Virology, 40: 190-211.

    Article  PubMed  Google Scholar 

  • Vanderauwera, S., Zimmermann, P., Rombauts, S., Vandenabeele, S., Langebartels, C., Gruissem, W., Inze,., and Van Breusegem, F. 2005. Genome‐Wide Analysis of Hydrogen Peroxide‐Regulated Gene Expression in Arabidopsis Reveals a High Light‐Induced Transcriptional Cluster Involved in Anthocyanin Biosynthesis. Plant Physiol., 139: 806-821.

    Article  PubMed  CAS  Google Scholar 

  • Wang, D., Weaver, N.D., Kesarwani, M., and Dong, X. 2005. Induction of Protein Secretory Pathway Is Required for Systemic Acquired Resistance. Science, 308: 1036-1040.

    Article  PubMed  CAS  Google Scholar 

  • Weigel, R.R., Bauscher, C., Pfitzner, A.J., and Pfitzner, U.M. 2001. NIMIN-1, NIMIN-2 and NIMIN-3, members of a novel family of proteins from Arabidopsis that interact with NPR1/NIM1, a key regulator of systemic acquired resistance in plants. Plant Mol. Biol., 46: 143-160.

    Article  PubMed  CAS  Google Scholar 

  • Weigel, R.R., Pfitzner, U.M., and Gatz, C. 2005. Interaction of NIMIN1 with NPR1 Modulates PR Gene Expression in Arabidopsis. Plant Cell, 17: 1279-1291.

    Article  PubMed  CAS  Google Scholar 

  • Wiermer, M., Feys, B.J., and Parker, J.E. 2005. Plant immunity: the EDS1 regulatory node. Curr. Opin. Plant Biol.., 8: 383-389.

    Article  PubMed  CAS  Google Scholar 

  • Wildermuth, M.C., Dewdney, J., Wu, G., and Ausubel, F.M. 2001. Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature, 414: 562-565.

    Article  PubMed  CAS  Google Scholar 

  • Xiang, C., Miao, Z., and Lam, E. 1997. DNA-binding properties, genomic organization and expression pattern of TGA6, a new member of the TGA family of bZIP transcription factors in Arabidopsis thaliana. Plant Mol. Biol., 34: 403-415.

    Article  PubMed  CAS  Google Scholar 

  • Xiang, C., Miao, Z.H., and Lam, E. 1996. Coordinated activation of as-1-type elements and a tobacco glutathione S-transferase gene by auxins, salicylic acid, methyl-jasmonate and hydrogen peroxide. Plant Mol. Biol., 32: 415-426.

    Article  PubMed  CAS  Google Scholar 

  • Xu, Y., Chang, P., Liu, D., Narasimhan, M., Raghothama, K., Hasegawa, P., and R, B. 1994. Plant Defense Genes Are Synergistically lnduced by Ethylene and Methyl Jasmonate. Plant Cell, 6: 1077-1085.

    Article  PubMed  CAS  Google Scholar 

  • Yalpani, N., Enyedi, A.J., J., L., and Raskin, I. 1994. Ultraviolet light and ozone stimulate accumulation of salicylic acid, pathogenesis related proteins and virus resistance in tobacco. Planta, 193: 372-376.

    Article  CAS  Google Scholar 

  • Yalpani, N., Silverman, P., Wilson, T., Kleier, D.A., and Raskin, I. 1991. Salicylic Acid Is a Systemic Signal and an Inducer of Pathogenesis-Related Proteins in Virus-Infected Tobacco. Plant Cell, 3: 809-818.

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki, D., Motohashi, K., Kasama, T., Hara, Y., and Hisabori, T. 2004. Target Proteins of the Cytosolic Thioredoxins in Arabidopsis thaliana. Plant Cell Physiol., 45: 18-27.

    Article  PubMed  CAS  Google Scholar 

  • Yang, Y., Qi, M., and Mei, C. 2004. Endogenous salicylic acid protects rice plants from oxidative damage caused by aging as well as biotic and abiotic stress. Plant J., 40: 909-919.

    Article  PubMed  CAS  Google Scholar 

  • Yoshiba, Y., Kiyosue, T., Nakashima, K., Yamaguchi-Shinozaki, K., and K., S. 1997. Regulation of levels of proline as an osmolyte in plants under water stress. Plant Cell Physiol., 38: 1095-1102.

    PubMed  CAS  Google Scholar 

  • Yu, E.Y., Kim, S.E., Kim, J.H., Ko, J.H., Cho, M.H., and Chung, I.K. 2000. Sequence-specific DNA Recognition by the Myb-like Domain of Plant Telomeric Protein RTBP1. J. Biol. Chem., 275: 24208-24214.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y., Fan, W., Kinkema, M., Li, X., and Dong, X. 1999. Interaction of NPR1 with basic leucine zipper protein transcription factors that bind sequences required for salicylic acid induction of the PR-1 gene. Proc. Natl. Acad. Sci. USA. 96: 6523-6528.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y., Tessaro, M.J., Lassner, M., and Li, X. 2003. Knockout Analysis of Arabidopsis Transcription Factors TGA2, TGA5, and TGA6 Reveals Their Redundant and Essential Roles in Systemic Acquired Resistance. Plant Cell, 15: 2647-2653.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, J., Davis, L.C., and Verpoorte, R. 2005. Elicitor signal transduction leading to production of plant secondary metabolites. Biotech. Advan., 23: 283-333.

    Article  CAS  Google Scholar 

  • Zhou, J.M., Trifa, Y., Silva, H., Pontier, D., Lam, E., Shah, J., and Klessig, D.F. 2000. NPR1 differentially interacts with members of the TGA/OBF family of transcription factors that bind an element of the PR-1 gene required for induction by salicylic acid. Mol. Plant Microbe Interact., 13: 191-202.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, N., Tootle, T.L., Tsui, F., Klessig, D.F., and Glazebrook, J. 1998. PAD4 functions upstream from salicylic acid to control defense responses in Arabidopsis. Plant Cell, 10: 1021-1030.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Holuigue, L., Salinas, P., Blanco, F., GarretÓn, V. (2007). Salicylic Acid and Reactive Oxygen Species in the Activation of Stress Defense Genes. In: Hayat, S., Ahmad, A. (eds) Salicylic Acid: A Plant Hormone. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5184-0_8

Download citation

Publish with us

Policies and ethics