Skip to main content

Salicylic Acid in Plant Disease Resistance

  • Chapter
Salicylic Acid: A Plant Hormone

Abstract

Salicylic acid (SA) plays an important role in plant defense. Its role in plant disease resistance is well documented for dicotyledonous plants, where it is required for basal resistance against pathogens as well as for the inducible defense mechanism, systemic acquired resistance (SAR), which confers resistance against a broad-spectrum of pathogens. The activation of SAR is associated with the heightened level of expression of the pathogenesis-related proteins, some of which possess antimicrobial activity. Studies in the model plant Arabidopsis thaliana have provided important insights into the mechanism of SA signaling in plant defense. The NPR1 protein is an important component of SA signaling in Arabidopsis. Homologues of NPR1 are present in other plant species. NPR1 is also required for plant defense mechanisms that do not require SA. Hence, NPR1 provides an important link between different defense mechanisms. Similarly, cross talk between SA and other defense signaling pathways results in the fine-tuning of plant defense response. Recent discoveries have implicated an important role for lipids in SA signaling. We discuss the progress made in understanding SA biosynthesis and signaling, its cross talk with other mechanisms in plant defense and the practical utility in targeting this defense mechanism for enhancing disease resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allan, A. C., and Fluhr, R., 1997. Two distinct sources of elicited reactive oxygen species in tobacco epidermal cells. Plant Cell, 9: 1559-1572.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, M. D., Chen, Z., and Klessig, D. F., 1998. Possible involvement of lipid peroxidation in salicylic acid-mediated induction of PR1 gene expression. Phytochem., 47: 555-566.

    Article  CAS  Google Scholar 

  • Anith, K. N., Momol, M. T., Kloepper, J. W., Marois, J. J., Olson, S. M., and Jones, J. B. 2004. Efficacy of plant growth-promoting rhizobacteria, acibenzolar-S-methyl, and soil amendment for integrated management of bacterial wilt on tomato. Plant Dis., 88: 669-673.

    Article  CAS  Google Scholar 

  • Antoniw, J. F., and White, R. F., 1980. The effects of aspirin and polyacrylic acid on soluble leaf proteins and resistance to virus infection in five cultivars of tobacco. Phytopathol. Z., 98: 331-341.

    CAS  Google Scholar 

  • Beffa, R., Szell, M., Meuwly, P., Pay, A., Vögeli-Lange, R., Métraux, J.-P., Neuhaus, G., Meins, F. Jr., and Nagy, F., 1995. Cholera toxin elevates pathogen resistance and induces pathogenesis-related gene expression in tobacco. EMBO J., 14: 5753-5761.

    PubMed  CAS  Google Scholar 

  • Belkhadir, Y., Subramaniam, R., and Dangl, J. L., 2004. Plant disease resistance protein signaling: NBS-LRR proteins and their partners. Curr. Opin Plant Biol., 7: 391-399.

    Article  PubMed  CAS  Google Scholar 

  • Belfanti, E., Silfverberg-Dilworth, E., Tartarini, S., Patocchi, A., Barbieri, M., Zhu, J., Vinatzer, B. A., Gianfransceschi, L., Gessler, C., and Sansavini, S., 2004, The HcrVf2gene from a wild apple confers scab resistance to a transgenic cultivated variety. Proc. Natl. Acad. Sci. USA., 101: 886–890.

    Article  PubMed  CAS  Google Scholar 

  • Bi, Y. M., Kenton, P., Mur, L., Darby, R., and Draper, J., 1995. Hydrogen peroxide does not function downstream of salicylic acid in the induction of PR protein expression. Plant J., 8: 235-245.

    Article  PubMed  CAS  Google Scholar 

  • Bowling, S. A., Guo, A., Cao, H., Gordon, A. S., Klessig, D. F., and Dong, X., 1994. A mutation in Arabidopsis that leads to constitutive expression of systemic acquired resistance. Plant Cell, 6: 1845-1857.

    Article  PubMed  CAS  Google Scholar 

  • Bowling, S. A., Clarke, J. D., Liu, Y., Klessig, D. F., and Dong, X. 1997. The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent resistance. Plant Cell, 9: 1573-1584.

    Article  PubMed  CAS  Google Scholar 

  • Bostock, R. M., 2005. Crosstalk and induced resistance: Straddling the line between cost and benefit. Annu. Rev. Phytopath., 43: 545–580.

    Article  CAS  Google Scholar 

  • Brodersen, P., Petersen, M., Pike, M. H., Olszak, B., Skov, S., Odum, N., Jorgensen, L. B., Brown, R. E., and Mundy, J., 2002. Knockout of Arabidopsis ACCELERATED-CELL DEATH11 encoding a sphingosine transfer protein causes activation of programmed cell death and defense. Genes Dev., 16: 490-502.

    Article  PubMed  CAS  Google Scholar 

  • Cao, H., Bowling, S. A., Gordon, A. S., and Dong, X., 1994. Characterization of an Arabidopsismutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell, 6: 1583-1592.

    Article  PubMed  CAS  Google Scholar 

  • Cao, H., Glazebrook, J., Clark, J. D., Volko, S., and Dong, X., 1997. The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell, 88: 57-63.

    Article  PubMed  CAS  Google Scholar 

  • Cao, H., Li, X., and Dong, X., 1998. Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proc. Natl. Acad. Sci. USA., 95: 6531-6536.

    Article  PubMed  CAS  Google Scholar 

  • Chamnongpol, S., Willekens H., Moeder, W., Langebartels, C., Sandermann, H. Jr., Van Montagu M., Inze, D., and Van Camp, W., 1998. Defense activation and enhanced pathogen tolerance induced by H2O2 in transgenic tobacco. Proc. Natl. Acad. Sci. USA., 95: 588-1823.

    Article  Google Scholar 

  • Chandra-Shekara A. C., Navarre, D., Kachroo, A., Kang, H. G., Klessig, D., and Kachroo, P., 2004. Signaling requirements and role of salicylic acid in HRT-and rrt-mediated resistance to turnip crinkle virus in Arabidopsis. Plant J., 40: 647-659.

    Article  PubMed  CAS  Google Scholar 

  • Chen, F., D’Auria, J. C., Tholl, D., Ross, J. R.., Gerzhenzon, J., Noel, J. P., and Pichersky, E., 2003. An Arabidopsis thaliana gene for methylsalicylate biosynthesis, identified by a biochemical genomics approach, has a role in defense. Plant J., 36: 577-588.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Z., Iyer, S., Caplan, A., Klessig, D. F., and Fan, B., 1997. Differential accumulation of salicylic acid and salicylic acid sensitive catalase in different rice tissue. Plant Physiol., 114: 193-201.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Z., Silva, H., and Klessig, D. F., 1993. Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science, 262: 1883–1886.

    Article  PubMed  CAS  Google Scholar 

  • Chern, M. S., Fitzgerald, H. A., Yadav, R. C., Canlas, P.E., Dong, X. N., and Ronald, P. C., 2001. Evidence for a disease-resistance pathway in rice similar to the NPR1- mediated signaling pathway in Arabidopsis. Plant J., 27: 101–113.

    Article  PubMed  CAS  Google Scholar 

  • Chern, M. S., Fitzgerald, H. A., Yadav, R. C., Canlas, P. E., Navarre, D. A., and Ronald, P. C., 2005. Overexpression of a rice NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light. Mol. Plant-Micro. Int., 18: 511-520.

    Article  CAS  Google Scholar 

  • Cipollini, D.F., 2002. Does competition magnify the fitness costs of induced responses in Arabidopsis thaliana? A manipulative approach. Oceologia, 131: 514–520.

    Article  Google Scholar 

  • Clarke, J. D., Volko, S. M., Ledford, H., Ausubel, F. M., and Dong, X., 2000. Roles of salicylic acid, jasmonic acid, and ethylene in cpr-induced resistance in Arabidopsis. Plant Cell, 12: 2175–2190.

    Article  PubMed  CAS  Google Scholar 

  • Coquoz, J. L., Buchala, A., and Métraux, P., 1995. Arachidonic acid induces local but not systemic synthesis of salicylic acid and confers systemic resistance in potato plants to Phytophthora infestans and Alternaria solani. Phytopath.,85: 1219– 1224

    Article  CAS  Google Scholar 

  • Chong, J. Marie-Agnés Pierrel, M.A., Atanassova, R., Reichhart, D.W., Fritig, B., and Saindrenan, P., 2001. Free and conjugated benzoic acid in tobacco plants and cell cultures. Induced accumulation upon elicitation of defense responses and role as salicylic acid precursors. Plant Physiol., 125: 318–328.

    Article  PubMed  CAS  Google Scholar 

  • Dangl, J. L., and Jones, J. D. G., 2001. Plant pathogens and integrated defense responses to infection. Nature, 411: 826-833.

    Article  PubMed  CAS  Google Scholar 

  • Delaney, T.P., Uknes, S., Vernooij, B., Friedrich, L., Weymann, K., Negrotto, D., Gaffney, T., Gut-Rella, M., Kessmann, H., Ward, E., and Ryals, J., 1994. A central role of salicylic acid in plant disease resistance. Science, 266: 1247–1250.

    Article  CAS  PubMed  Google Scholar 

  • Delaney, T.P., Friedrich, L., and Ryals, J.A., 1995. Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance. Proc. Natl. Acad. Sci. USA., 92: 6602-6606.

    Article  PubMed  CAS  Google Scholar 

  • Dempsey, D.A., Shah. J., and Klessig, D. F., 1999. Salicylic acid and disease resistance in plants. Crit. Rev. Plant Sci., 18: 547-575.

    CAS  Google Scholar 

  • Després, C., Chubak, C., Rochon, A., Clark, R., Bethune, T., Desveaux, D., and Fobert, P. R., 2003. The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1. Plant Cell, 15: 2181–2191.

    Article  PubMed  CAS  Google Scholar 

  • Després, C., De Long, C., Glaze, S., Liu, E., and Fobert, P.R., 2000. The Arabidopsis NPR1/NIM1 protein enhances the DNA binding activity of a subgroup of the TGAfamily of bZIP transcription factors. Plant Cell, 12: 279-290.

    Article  PubMed  Google Scholar 

  • Devadas, S. K., Enyedi, A., and Raina, R., 2002. The Arabidopsis hrl1 mutation reveals novel overlapping roles for salicylic acid, jasmonic acid and ethylene signaling in cell death and defence against pathogens. Plant J., 30: 467–80.

    Article  PubMed  CAS  Google Scholar 

  • Desveaux, D., Allard, J., Brisson, N., and Sygusch, J., 2002. A new family of plant transcription factors displays a novel ssDNA-binding surface. Nat. Str. Biol., 9: 512-517.

    Article  CAS  Google Scholar 

  • Desveaux, D., Subramaniam, R., Després, C., Mess, J. N., Lévesque, C. L., Fobert, P. R., Dangl, J. L., and Brisson, N., 2004. A “Whirly” Transcription Factor Is Required for Salicylic Acid-Dependent Disease Resistance in Arabidopsis. Dev. Cell, 6: 229–240.

    Article  PubMed  CAS  Google Scholar 

  • Devoto, A., and Turner, J. G., 2003. Regulation of jasmonate-mediated plant responses in Arabidopsis. Ann. Bot., 92: 329–337.

    Article  PubMed  CAS  Google Scholar 

  • Doares, S. H., Narvaez-Vasquez, J., Conconi, A., and Ryan, C., 1995. Salicylic acid inhibits synthesis of proteinase inhibitors in tomato leaves induced by systemin and jasmonic acid. Plant Physiol., 108: 1741– 1746.

    PubMed  CAS  Google Scholar 

  • Doherty, H., Selvendran, R., and Bowles, D., 1988. The wound response of tomato plants can be inhibited by aspirin and related hydroxy-benzoic acids. Physiol. Mol. Plant Pathol., 33: 377–384.

    Article  CAS  Google Scholar 

  • Dong, X. N., 2004. NPR1, all things considered. Curr. Opin. Plant Biol., 7:547– 552

    Article  PubMed  CAS  Google Scholar 

  • Du, H., and Klessig, D. F. 1997. Identification of a soluble, high-affinity salicylic acid binding protein in tobacco. Plant Physiol., 113: 1319–1327.

    PubMed  CAS  Google Scholar 

  • Durner, J., and Klessig, D. F., 1995. Inhibition of ascorbate peroxidase by salicylic acid and 2, 6-dichloroisonicotinic acid, two inducers of plant defense responses. Proc. Natl. Acad. Sci. USA., 92: 11312–11316.

    Article  PubMed  CAS  Google Scholar 

  • Durrant, W. E., and Dong, X., 2004. Systemic acquired resistance. Annu. Rev. Phytopath., 42: 185–209.

    Article  CAS  Google Scholar 

  • Enyedi, A. J., and Raskin, I., 1993. Induction of UDP-glucose salicylic acid and glucosyltransferaase activity in tobacco mosaic virus-inoculated tobacco Nicotiana tabacumleaves. Plant Physiol., 101: 1375-1380.

    PubMed  CAS  Google Scholar 

  • Falk, A., Feys, B. J., Frost, L. N., Jones, J. D.G., Daniels, M. J., and Parker, J. E., 1999. EDS1, an essential component of R gene-mediated disease resistance in Arabidopsishas homology to eukaryotic lipases. Proc. Natl. Acad. Sci. USA., 96: 3292–3297.

    Article  PubMed  CAS  Google Scholar 

  • Felton, G. W., and Korth, K. L., 2000. Trade-offs between pathogen and herbivore resistance. Curr. Opin. Plant Biol., 3: 309–314.

    Article  PubMed  CAS  Google Scholar 

  • Feys, B.J., Wiermer, M., Bhat, A., R., Lisa J. Moisan, J. M., Escobar, M. N., Neu, C., Cabral, A., and Parker, J. E., 2005. Arabidopsis SENESCENCE-ASSOCIATED GENE101 stabilizes and signals within an ENHANCED DISEASE SUSCEPTIBILITY1 complex in plant innate immunity. Plant Cell., 17: 2601–2613.

    Article  PubMed  CAS  Google Scholar 

  • Feys, B. J., Moisan, L. J., Newman, M. A., and Parker, J. E., 2001. Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4. Embo. J., 20: 5400-5411.

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald, H. A., Chern, M. S., Navarre, R., and Ronald. P. C., 2004. Overexpression of (At)NPR1 in rice leads to a BTH-and environment-induced lesion-mimic/cell death phenotype. Mol. Plant-Microbe Inter., 17: 140-151.

    Article  CAS  Google Scholar 

  • Forouhar, F., Yang, Y., Kumar, D., Chen, Y., Fridman, E., Park, W.S., Chiang, Y., Acton, B. T., MontelioneT.G., Pichersky, E., Klessig, D.F., and Tong, L., 2005. Structural and biochemical studies identify tobacco SABP2 as a methyl salicylate esterase and implicate it in plant innate immunity. Proc. Natl. Acad. Sci. USA., 102: 1773-1778.

    Article  PubMed  CAS  Google Scholar 

  • Friedrich, L., Lawton, K., Dietrich, R., Willits, M., Cade, R., and Ryals , J., 2001. NIM1overexpression in Arabidopsis potentiates plant disease resistance and results in enhanced effectiveness of fungicides. Mol. Plant Microbe Inter., 14: 1114–1124.

    Article  CAS  Google Scholar 

  • Friedrich, L., Lawton, K., Reuss, W., Masner, P., Specker, N., Friedrich, L. N., Lawton, K., Ruess,W., Masner, P., Specker, N., Gut-Rella, M., Meier, B., Dincher, S., Staub, T., Uknes, S, Métraux, J. P., Kessmann, H., and Ryals, J., 1996. A benzothiadiazole induces systemic acquired resistance in tobacco. Plant J., 10: 61–70.

    Article  CAS  Google Scholar 

  • Gaffney, T., Friedrich, L., Vernooij, B., Negrotto, D., Nye. G., Uknes, S., Ward, E., Kessmann, H., and Ryals, J., 1993. Requirement of salicylic acid for the induction of systemic acquired resistance. Science, 261: 754–756.

    Article  CAS  PubMed  Google Scholar 

  • Genoud, T., Buchala, A.J., Chua, N.-H., and Métraux, J.-P., 2002. Phytochrome signalling modulates the SA-perceptive pathway in Arabidopsis. Plant J., 31: 87-95.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, R. D., Johnson, A. N., and Dean, R. A., 1996. Chemical signals responsible for appressorium formation in the rice blast fungus Magnaporthe grisea. Physiol. Mol. Plant Pathol., 48: 335–346.

    Article  CAS  Google Scholar 

  • Glazebrook, J., Chen, W. J., Estes, B., Chang, H. S., Nawrath, C., Métraux, J. P., Zhuand, T., and Katagiri, F., 2003. Topology of the network integrating salicylate and jasmonate signal transduction derived from global expression phenotyping. Plant J., 34: 217-228.

    Article  PubMed  CAS  Google Scholar 

  • Glazebrook, J., Rogers, E. E., and Ausubel, F. M., 1996. Isolation of Arabidopsis mutants with enhanced disease susceptibility by direct screening. Genetics, 143: 973–982.

    PubMed  CAS  Google Scholar 

  • Gomez-Gomez, L., and Boller, T., 2002. Flagellin perception: a paradigm for innate immunity. Tren. Plant. Sci., 6: 251–256.

    Article  Google Scholar 

  • Gorlach, J., Volrath, S., Knauf-Beiter, G., Hengy, G., Beckhove, U., Kogel, K.-H., Oostendorop, M., Staub, T., Ward, E., Kessmann, H., and Ryals, J., 1996. Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat. Plant Cell, 8: 629–643.

    Article  PubMed  CAS  Google Scholar 

  • Guedes, M.E.M., Richmond, S., and Kuc, J., 1980. Induced systemic resistance to anthracnose in cucumber as influenced by the location of the inducer inoculation with Colletotrichum lagenarium and the onset of flowering and fruiting. Physiol. Plant Pathol., 17: 229–233.

    Article  Google Scholar 

  • Gupta, V., Willits, M.G., and Glazebrook, J., 2000. Arabidopsis thaliana EDS4 contributes to salicylic acid (SA)-dependent expression of defense responses: evidence for inhibition of jasmonic acid signaling by SA. Mol. Plant Microbe Inter., 13: 503–511.

    Article  CAS  Google Scholar 

  • Heil, M., 2002. Ecological costs of induced resistance. Curr. Opin. Plant Biol., 5: 345–350.

    Article  PubMed  Google Scholar 

  • Heil, M., and Baldwin, I. T., 2002. Fitness costs of induced resistance: emerging experimental support for a slippery concept. Tren. Plant Sci., 7: 61–67.

    Article  CAS  Google Scholar 

  • Heil, M., and Bostock, R. M. 2002. Induced systemic resistance (ISR) against pathogens in the context of induced plant defences. Ann. Bot., 89: 503–512.

    Article  PubMed  CAS  Google Scholar 

  • Heil, M., Hilpert, A., Kaiser, W., and Linsenmair, K. E., 2000. Reduced growth and seed set following chemical induction of pathogen defence: does systemic acquired resistance (SAR) incur allocation costs? J. Ecol., 88: 645–654.

    Article  CAS  Google Scholar 

  • Hennig, J., Malamy, J., Grynkiewicz, G., Indulski, J., and Klessig, D. F. 1993. Interconversion of the salicylic acid signal and its glucoside in tobacco. Plant J., 4: 593-600.

    Article  PubMed  CAS  Google Scholar 

  • Hua, J., Grisafi, P., Cheng, S. H., and Fink, G. R., 2001. Plant growth homeostasis is controlled by the Arabidopsis BON1 and BAP1 genes. Genes Dev., 15: 2263–2272.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, C., Boden, E., and Arias, J., 2003. Salicylic acid and NPR1 induce the recruitment of trans-activating TGA factors to a defense gene promoter in Arabidopsis. Plant Cell, 15: 1846–1858.

    Article  PubMed  CAS  Google Scholar 

  • Jones, J. D., 2001. Putting knowledge of plant disease resistance genes to work. Curr. Opin. Plant. Biol., 4: 281-287.

    Article  PubMed  CAS  Google Scholar 

  • Kachroo, P., Kachroo, A., Lapchyk, L., Hildebrand, D., and Klessig, D. F., 2003. Restoration of defective cross talk in ssi2 mutants: role of salicylic acid, jasmonic acid, and fatty acids in SSI2-mediated signaling. Mol. Plant-Microbe. Inter., 16: 1022–1029.

    Article  CAS  Google Scholar 

  • Kachroo, P., Shanklin, J., Shah, J., Whittle, E. J., and Klessig, D.F., 2001. A fatty acid desaturase modulates the activation of defense signaling pathways in plants. Proc. Natl. Acad. Sci. USA., 98: 9448-9453.

    Article  PubMed  CAS  Google Scholar 

  • Kiefer, I. W., and Slusarenko, A.J., 2003. The pattern of systemic acquired resistance induction within the Arabidopsis rosette in relation to the pattern of translocation. Plant Physiol., 132: 840–847.

    Article  PubMed  CAS  Google Scholar 

  • Kinkema, M., Fan, W., and Dong, X., 2000. Nuclear localization of NPR1 is required for activation of PR gene expression. Plant Cell, 12: 2339–2350.

    Article  PubMed  CAS  Google Scholar 

  • Kloek, A. P., Verbsky, M. L., Sharma, S. B., Schoelz, J. E., Vogel, J., Klessig, D. F., and Kunkel, B.N., 2001. Resistance to Pseudomonas syringae conferred by an Arabidopsis thaliana coronatine-insensitive (coi1) mutation occurs through two distinct mechanisms Plant J., 26: 509- 522.

    Article  PubMed  CAS  Google Scholar 

  • Kogel, K.-H., Beckhove, U., Dreschers, J., Münch, S., and Rommé, Y., 1994. Acquired resistance in barley. Plant Physiol., 106: 1269-1277.

    PubMed  CAS  Google Scholar 

  • Kogel, K.-H., and Langen, G., 2005. Induced disease resistance and gene expression in cereals. Cell. Microbiol., 7: 1555-1564.

    Article  PubMed  CAS  Google Scholar 

  • Kohler, A., Schwindling, S., and Conrath U., 2002. Benzothiadiazole-induced priming for potentiated responses to pathogen infection, wounding, and infiltration of water into leaves require the NPR1/NIM1 gene in Arabidopsis. Plant Physiol., 128: 1046–1056.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, D., and Klessig, D.F., 2003. High-affinity salicylic acid-binding protein 2 is required for plant innate immunity and has salicylic acid-stimulated lipase activity. Proc. Natl. Acad. Sci. USA., 100: 16101-16106.

    Article  PubMed  CAS  Google Scholar 

  • Kunkel, B. N., and Brooks, D. M., 2002. Cross talk between signaling pathways in pathogen defense. Curr. Opin. Plant Biol., 5: 325–331.

    Article  PubMed  CAS  Google Scholar 

  • Kus, J.V., Zaton, K., Sarkar, R., and Cameron, R.K., 2002. Age-related resistance in Arabidopsis is a developmentally regulated defense response to Pseudomonas syringae. Plant Cell, 14: 479-490.

    Article  PubMed  CAS  Google Scholar 

  • Lam, E., 2004. Controlled cell death, plant survival and development. Nature Rev. Mol. Cell. Biol., 5: 305–315.

    Article  CAS  Google Scholar 

  • Lam, E., Kato, N., and Lawton, M., 2001. Programmed cell death, mitochondria and the plant hypersensitive response. Nature, 411: 848–853.

    Article  PubMed  CAS  Google Scholar 

  • Lawton, K.A., Friedrich, L., Hunt, M., Weymann, K., Delaney, T., Kessmann, H., Staub, T., and Ryals, J., 1996. Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway. Plant J., 10: 71–82.

    Article  PubMed  CAS  Google Scholar 

  • Léon, J., Lawton, M.A., and Raskin, I., 1995a. Hydrogen peroxide stimulates salicylic acid biosynthesis in tobacco. Plant Physiol., 108: 1673–1678.

    Google Scholar 

  • Léon, J., Shulaev, V., Yalpani, N., Lawton, M. A., and Raskin, I., 1995b. Benzoic acid 2-hydroxylase, a soluble oxygenase from tobacco, catalyzes salicylic acid biosynthesis. Proc. Natl. Acad. Sci. USA., 92: 10413-10417.

    Article  Google Scholar 

  • Lebel, E., Heifetz, P., Thorne, L., Uknes, S., Ryals, J., and Ward, E., 1998. Functional analysis of regulatory sequences controlling PR-1 gene expression in Arabidopsis. Plant J., 16: 223-233.

    Article  PubMed  CAS  Google Scholar 

  • Lee, H. I., Leon, J., and Raskin, I., 1995. Biosynthesis and metabolism of salicylic acid. Proc. Natl. Acad. Sci. USA., 92: 4076-4079.

    Article  PubMed  CAS  Google Scholar 

  • Li, J., Brader, G., and Palva, E. T., 2004. The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell, 16: 319–331.

    Article  PubMed  CAS  Google Scholar 

  • Li, X., Zhang, Y., Clarke, J.D., Li, Y., and Dong, X., 1999. Identification and cloning of a negative regulator of systemic acquired resistance, SNI1, through a screen for suppressors of npr1-1. Cell, 98: 329-339.

    Article  PubMed  CAS  Google Scholar 

  • Lin, W.C., Lu, C. F., Wu, J. W., Cheng , M. L., Lin, Y. M., Yang, N. S., Black, L., Green, S. K., Wang, J. F., and Cheng, C.P., 2004. Transgenic tomato plants expressing the Arabidopsis NPR1 gene display enhanced resistance to a spectrum of fungal and bacterial diseases. Transgenic Res., 13: 567-581.

    Article  PubMed  CAS  Google Scholar 

  • Lou, Y. G., and Baldwin, I. T., 2004. Nitrogen supply influences herbivore-induced direct and indirect defenses and transcriptional responses to Nicotiana attenuata. Plant Physiol., 135: 496–506.

    Article  PubMed  CAS  Google Scholar 

  • Makandar, R., Essig, J. S., Schapaugh, M. A., Trick, H. N., and Shah, J., 2006. Genetically engineered resistance to Fusarium head blight in wheat by expression of Arabidopsis NPR1. Mol. Plant-Microbe Inter., 19: 123-129.

    Article  CAS  Google Scholar 

  • Malamy, J., Carr, J.P. and Klessig, D.F., and Raskin, I., 1990. Salicylic acid: a likely endogenous signal in the resistance response of tobacco to viral infection. Science, 250: 1002–1004.

    Article  CAS  PubMed  Google Scholar 

  • Malamy, J., and Klessig, D. F., 1992. Salicylic acid and plant disease resistance. Plant J., 2: 643-654.

    CAS  Google Scholar 

  • Maldonado, A.M., Doerner, P., Dixon, R. A., Lamb, C. J., and Cameron, R. K., 2002. A putative lipid transfer protein involved in systemic resistance signaling in Arabidopsis. Nature, 419: 399–403.

    Article  PubMed  CAS  Google Scholar 

  • Mateo, A., Mühlenbock, P., Rustérucci, C., Chi-Chen Chang, C., Miszalski, Z., Karpinska, B., Parker, J. E., Mullineaux, P. M., and Karpinski, S., 2004. LESION SIMULATING DISEASE 1 is required for acclimation to conditions that promote excess excitation energy. Plant Physiol., 136: 2818-2830.

    Article  PubMed  CAS  Google Scholar 

  • Mauch-Mani, B., and Slusarenko, A.J., 1996. Production of salicylic acid precursors is a major function of phenylalanine ammonia-lyase in the resistance of Arabidopsis to Peronospora parasitica. Plant Cell, 8: 203-212.

    Article  PubMed  CAS  Google Scholar 

  • Mauch, F., Mauch-Mani, B., Gaille, C., Kull, B., Haas, D., and Reimmann, C., 2001. Manipulation of salicylate content in Arabidopsis thaliana by the expression of an engineered bacterial salicylate synthase. Plant J., 25: 62-77.

    Article  Google Scholar 

  • McDowell, M.J., and Woffenden, J.B., 2003. Plant disease resistance genes: recent insights and potential applications. Trend. Biotech., 21: 178-183.

    Article  CAS  Google Scholar 

  • Métraux , J. P., 2002. Recent breakthroughs in the study of salicylic acid biosynthesis. Tren. Plant. Sci. 7: 332-334.

    Article  Google Scholar 

  • Métraux, J.P., Signer, H., Ryals, J., Ward, E., Wyss-Benz, M., Gaudin, J., Raschdorf, K., Schmid, E., Blum, W., and Inverardi, B., 1990. Increase in salicylic acid at the onset of systemic acquired resistance in cucumber. Science, 250: 1004–1006.

    Article  PubMed  Google Scholar 

  • Meuwly, P., Mölders, W., Buchala, A., and Métraux, J. P. 1995. Local and systemic biosynthesis of salicylic acid in infected cucumber plants. Plant Physiol., 109: 1107-1114.

    PubMed  CAS  Google Scholar 

  • Mitchell, J.A., Akarasereenont, P., Thiemermann, C., Flower, R.J., and Vane, J.R., 1993. Selectivity of nonsteroidal antiinflammatory drugs as inhibitors of constitutive and inducible cyclooxygenase. Proc. Natl. Acad. Sci. USA., 90: 11693-11697.

    Article  PubMed  CAS  Google Scholar 

  • Mittler, R., 2002. Oxidative stress, antioxidants and stress tolerance. Tren. Plant. Sci., 7: 405-410.

    Article  CAS  Google Scholar 

  • Mou, Z., Fan, W.H., and Dong, X.N., 2003. Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell, 113: 935–944.

    Article  PubMed  CAS  Google Scholar 

  • Mölders, W., Buchala, A., and Métraux, J.-P., 1996. Transport of salicylic acid in tobacco necrosis virus-infected cucumber plants. Plant Physiol., 112: 787-792.

    PubMed  Google Scholar 

  • Morris, S.W., Vernooij, B., Titatarn, S., Starrett, M., Thomas, S., Wiltse, C.C., Frederiksen, R.A., Bhandhufalck, A., Hulbert, S., and Uknes, S., 1998. Induced resistance responses in maize. Mol. Plant-Microbe Inter., 11: 643-658.

    Article  CAS  Google Scholar 

  • Nandi, A., Moeder, W., Kachroo, P., Klessig, D. F., and Shah, J., 2005. The Arabidopsis ssi2-conferred susceptibility to Botrytis cinereais dependent on EDS5and PAD4. Mol. Plant-Microbe Interact., 18: 363–370.

    Article  CAS  Google Scholar 

  • Nandi, A., Welti, R., and Shah, J., 2004. The Arabidopsis thaliana dihydroxyacetone phosphate reductase gene SUPPRESSOR OF FATTY ACID DESATURASE DEFICIENCY 1 is required for glycerolipid metabolism and for the activation of systemic acquired resistance. Plant Cell, 16: 465–477.

    Article  PubMed  CAS  Google Scholar 

  • Nandi, A., Krothapalli, K., Buseman, M.C., Li, M., Enyedi, A., and Shah, J., 2003. Arabidopsis sfd mutants affect plastidic lipid composition and suppress dwarfing, cell death, and enhanced disease resistance phenotypes resulting from the deficiency of a fatty acid desaturase. Plant Cell, 15: 2383-2398.

    Article  PubMed  CAS  Google Scholar 

  • Nawrath, C., and Métraux, J. P. 1999. Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell, 11: 1393–1404.

    Article  PubMed  CAS  Google Scholar 

  • Nawrath, C., Heck, S., Parinthawong, N., and Métraux, J. P., 2002. EDS5, an essential component of salicylic acid-dependent signaling for disease resistance in Arabidopsis, is a member of the MATE transporter family. Plant Cell, 14: 275-286.

    Article  PubMed  CAS  Google Scholar 

  • Neuenschwander, U., Vernooij, B., Friedrich, L., Uknes,S., Kessmann, H., and Ryals, J., 1995. Is hydrogen peroxide a second messenger of salicylic acid in systemic acquired resistance. Plant J., 8: 227–233.

    Article  CAS  Google Scholar 

  • Niki, T., Mitsubara, I., Seo, S., Ohtsubo, N., and Ohashi, Y., 1998. Antagonistic effect of salicylic acid and jasmonic acid on the expression of pathogenesis-related (PR) protein genes in wounded mature tobacco leaves, Plant Cell Physiol., 39: 500–507.

    CAS  Google Scholar 

  • Norman-Setterblad, C., Vidal, S., and Palva, T. E. 2000. Interacting signal pathways control defense gene expression in Arabidopsis in response to cell wall-degrading enzymes from Erwinia carotovora. Mol. Plant Micro. Inter., 13: 430–438.

    Article  CAS  Google Scholar 

  • Nürnberger, T., and Brunner, F. 2002. Innate immunity in plants and animals: emerging parallels between the recognition of general elicitors and pathogen-associated molecular patterns. Curr. Opin. Plant Biol., 5: 318–324.

    Article  PubMed  Google Scholar 

  • Parker, J. E. 2003. Plant recognition of microbial patterns. Tren. Plant Sci., 8: 245– 247.

    Article  CAS  Google Scholar 

  • Pasquer, F., Isidore, E., Zarn, J., and Keller, B., 2005. Specific patterns of changes in wheat gene expression after treatment with three antifungal compounds. Plant Mol. Biol., 57: 693-707.

    Article  PubMed  CAS  Google Scholar 

  • Petersen, M., Brodersen, P., Naested, H., Andreasson, E., Lindhart, U., Johansen, B., Nielsen, H. B., Lacy, M., Austin, M. J., Parker, J. E., Sharma, S.B., Klessig, D. F., Martienssen, R., Mattsson, O., Jensen, A.B., and Mundy, J., 2000. Arabidopsis map kinase 4 negatively regulates systemic acquired resistance. Cell, 103: 1111-1120.

    Article  PubMed  CAS  Google Scholar 

  • Pieterse, C. M. J., Ton, J. and Van Loon, L. C., 2001. Cross-talk between plant defense signaling pathways: boost or burden?Ag.Biotech.Net., 3: 1-8.

    Google Scholar 

  • Pieterse, C. M. J., and Van Loon, L.C., 2004. NPR1: the spider in the web of induced resistance signaling pathways. Curr. Opin. Plant Biol., 7: 456–464.

    Article  PubMed  CAS  Google Scholar 

  • Pieterse, C. M. J., VanWees, S. C. M., Ton, J., Van Pelt, J. A., and Van Loon, L. C., 2002. Signalling in rhizobacteria-induced systemic resistance in Arabidopsis thaliana. Plant Biol., 4: 535–544.

    Article  CAS  Google Scholar 

  • Pink, D. A. C., 2002. Stategies using genes for non-durable resistance. Euphytica, 1: 227-236.

    Article  Google Scholar 

  • Preston, C.A., Lewandowski, C., Enyedi, A.J., and Baldwin , I.T., 1999. Tobacco mosaic virus inoculation inhibits wound-induced jasmonic acid-mediated responses within but not between plants. Planta, 209: 87–95.

    Article  PubMed  CAS  Google Scholar 

  • Rainsford, K. D., 1984. Aspirin and the salicylates. Butterworth, London.

    Google Scholar 

  • Raridan, G. J., and Delaney, T. P., 2002. Role of salicylic acid and NIM1/NPR1 in race-specific resistance in Arabidopsis. Genetics, 29: 439-451.

    Google Scholar 

  • Raskin, I., 1992. Role of salicylic acid in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol., 43: 439-463.

    Article  CAS  Google Scholar 

  • Rasmussen, J.B., Hammerschmidt, R., and Zook, M.N. 1991. Systemic induction of salicylic acid accumulation in cucumber after inoculation with Pseudomonas syringae pv syringae. Plant Physiol., 97: 1342-1347.

    Article  PubMed  CAS  Google Scholar 

  • Rate, D.N., Cuenca, J.V., Bowman, G.R., Guttman, D.S., and Greenberg, J.T., 1999. The gain-of-function Arabidopsis acd6 mutant reveals novel regulation and function of the salicylic acid signaling pathway in controlling cell death, defenses, and cell growth. Plant Cell, 11: 1695-1708.

    Article  PubMed  CAS  Google Scholar 

  • Ribnicky, D.M., Shulaev, V., and Raskin, I., 1998. Intermediates of salicylic acid biosynthesis in tobacco. Plant Physiol., 118: 565-572.

    Article  CAS  PubMed  Google Scholar 

  • Ross, A.F., 1966. Systemic effects of local lesion formation. Beemster ABR, Dijkstra J, eds. Viruses of Plants, Amsterdam, North-Holland. 127–150.

    Google Scholar 

  • Rüffer, M., Steipe, B., and Zenk, M. H., 1999. Evidence against specific binding of salicylic acid to catalase. FEBS Lett., 377: 175-180.

    Article  Google Scholar 

  • Ryals, J.A., Neuenschwander, U.H., Willits, M.G., Molina, A., Steiner, H.Y., and Hunt, M.D., 1996. Systemic acquired resistance. Plant Cell, 8: 1809–1819.

    Article  PubMed  CAS  Google Scholar 

  • Ryals, J., Weymann, K., Lawton, K., Friedrich, L., Ellis, D., Steiner, H.-Y., Johnson, J., Delaney, T.P., Jesse, T., Vos, P., and Uknes, S., 1997. The Arabidopsis NIM1 protein shows homology to the mammalian transcription factor inhibitor Iκ B. Plant Cell, 9: 425–439.

    Article  PubMed  CAS  Google Scholar 

  • Schweigert, N., Zehnder, A. J. B., and Eggen, R. I. L., 2001. Chemical properties of catechols and their molecular modes of toxic action in cells, from microorganisms to mammals. Environ. Microbiol., 3: 81-91.

    Article  PubMed  CAS  Google Scholar 

  • Sekine, K.T., Nandi, A., Ishihara, T., Hase, S., Ikegami, M., Shah, J., and Takahashi, H., 2004. Enhanced resistance to Cucumber mosaic virus in the Arabidopsis thaliana ssi2 mutant is mediated via an SA-independent mechanism. Mol. Plant-Microbe Inter., 17: 623-632.

    Article  CAS  Google Scholar 

  • Serino, L., Reimmann, C., Baur, H., Beyeler, M., Visca, P., and Hass, D., 1995. Structural genes for salicylate biosynthesis from chorismate in Pseudomonas aeruginosa. Mol. Gen. Genet., 249: 217–228.

    Article  PubMed  CAS  Google Scholar 

  • Shah, J., 2003. The salicylic acid loop in plant defense. Curr. Opin. Plant. Biol., 6: 365-371.

    Article  PubMed  CAS  Google Scholar 

  • Shah, J., 2005, Lipids, lipases and lipid modifying enzymes in plant disease resistance. Annu. Rev. Phytopath., 43: 229-260.

    Article  CAS  Google Scholar 

  • Shah, J., Kachroo, P., and Klessig, D.F., 1999. The Arabidopsis ssi1 mutation restores pathogenesis-related gene expression in npr1 plants and renders Defensin gene expression SA dependent. Plant Cell, 11: 191-206.

    Article  PubMed  CAS  Google Scholar 

  • Shah, J., Kachroo, P., Nandi, A., and Klessig, D.F., 2001. A recessive mutation in the Arabidopsis SSI2 gene confers SA and NPR1-independent expression of PR genes and resistance against bacterial and oomycete pathogens. Plant J., 25: 563–574.

    Article  PubMed  CAS  Google Scholar 

  • Shah, J., and Klessig, D. F., 1999. Salicylic acid: signal perception and transduction. In: Hooykaas, P. P. J., Hall, M. A, Libbenga, K. R., eds., Biochemistry and Molecular Biology of Plant Hormones. Amsterdam, Netherlands: Elsevier. 513–541.

    Google Scholar 

  • Shah, J., Tsui, F., and Klessig, D.F., 1997. Characterization of a salicylic acid insensitive mutant (sai1) of Arabidopsis thaliana, identified in a selective screen utilizing the SA-inducible expression of the tms2 gene. Mol. Plant Microbe. Inter., 10: 69-78.

    Article  CAS  Google Scholar 

  • Shirano, Y., Kachroo, P., Shah, J., and Klessig, D.F., 2002. A gain-of-function mutation in an Arabidopsis toll interleukin 1 receptor–nucleotide binding site–leucine-rich repeat type R gene triggers defense responses and results in enhanced disease resistance. Plant Cell, 14: 3149–3162.

    Article  PubMed  CAS  Google Scholar 

  • Shirasu, K., Nakajima, H., Rajasekhar, V.K., Dixon, R.A., and Lamb, C., 1997. Salicylic acid potentiates an agonist-dependent gain control that amplifies pathogen signals in the activation of defense mechanisms. Plant Cell, 9: 261–270.

    Article  PubMed  CAS  Google Scholar 

  • Shulaev V, Léon J, and Raskin I., 1995. Is salicylic acid a translocated signal of systemic acquired resistance in tobacco? Plant Cell, 7: 1691–1701.

    Article  PubMed  CAS  Google Scholar 

  • Shulaev, V., Silverman, P., and Raskin, I., 1997. Airborne signalling by methyl salicylate in plant pathogen resistance. Nature, 385: 718–721.

    Article  CAS  Google Scholar 

  • Silverman, P., Seskar, M., Kanter, D., Schweizer, P., Métraux, J.-P., and Raskin, I., 1995. Salicylic acid in rice: biosynthesis, conjugation, and possible role. Plant Physiol., 108: 633-639.

    PubMed  CAS  Google Scholar 

  • Singh, D. P., Moore, C. A., Gilliland, A., and Carr, J. P., 2004. Activation of multiple antiviral defense mechanisms by salicylic acid. Mol. Plant Pathol., 5: 57-63.

    Article  CAS  Google Scholar 

  • Slaymaker, D.H., Navarre, D.A., Clark, D., Del Pozo, O., Martin, G.B., and Klessig, D.F., 2002. The tobacco salicylic acid-binding protein 3 (SABP3) is the chloroplast carbonic anhydrase, which exhibits antioxidant activity and plays a role in the hypersensitive defense response. Proc. Natl. Acad. Sci. USA., 99: 11640-11645.

    Article  PubMed  CAS  Google Scholar 

  • Smith, J. A., Hammerschmidt, R., and Fulbright, D. W., 1991, Rapid induction of systemic resistance in cucumber by Pseudomonas syringae pv. syringaePhysiol. Mol. Plant Pathol., 38: 223-235.

    Article  Google Scholar 

  • Song, J.T., Lu, H., McDowell, J.M., and Greenberg, J.T., 2004. A key role for ALD1 in activation of local and systemic defenses in Arabidopsis. Plant J., 40: 200-212.

    Article  PubMed  CAS  Google Scholar 

  • Spoel, S.H., Koornneef, A., Claessens, S.M.C., Korzelius, J.P., Van Pelt, J. A., Mueller, M. J., Buchala, A. J., Métraux, J.-P., Brown, R., Kazan, K., Van Loon, L. C., Dong, X., and Pieterse, C. M. J., 2003. NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell, 15: 760–770.

    Article  PubMed  CAS  Google Scholar 

  • Sticher, L., Mauch-Mani, B., and Métraux, J.P., 1997. Systemic acquired resistance. Annu. Rev. Phytopathol., 35: 235–270.

    Article  PubMed  CAS  Google Scholar 

  • Stout, M. J., Fidantsef, A.L., Duffey, S. S., and Bostock, R. M., 1999. Signal interactions in pathogen and insect attack: Systemic plant-mediated interactions between pathogens and herbivores of the tomato, Lycopersicon esculentum. Physiol. Mol. Plant Pathol., 54: 115–130.

    Article  CAS  Google Scholar 

  • Stout, M. J., Workman, K.V., Bostock , R. M., and Duffey , S.S., 1998. Specificity of induced resistance in the tomato, Lycopersicon esculentum. Oecologia., 113: 74–81.

    Article  Google Scholar 

  • Summermatter, K., Sticher, L., and Metraux, J. P., 1995. Systemic responses in Arabidopsis thaliana infected and challenged with Pseudomonas syringae pv. syringae. Plant. Physiol., 108: 1379-1385.

    PubMed  CAS  Google Scholar 

  • Suzuki, H., Xia, Y., Cameron, R., Shadle, G., Blount, J., Lamb, C., and Dixon, R.A., 2004. Signals for local and systemic responses of plants to pathogen attack. J. Exp. Bot., 55: 169-179.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, H., Chen, Z., Du, H., Liu, Y., and Klessig, D.F. 1997. Development of necrosis and activation of disease resistance in transgenic tobacco plants with severely reduced catalase levels. Plant J., 11: 993-1005.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, H., Miller, J., Nozaki, Y., Sukamoto, Takeda, M., Shah, J., Hase, S., Ikegami, M., Ehara, Y., and Dinesh-Kumar, S.P., 2002. RCY1, an Arabidopsis thaliana RPP8/HRT family resistance gene, conferring resistance to cucumber mosaic virus requires salicylic acid, ethylene and a novel signal transduction mechanism. Plant J., 32: 655-667.

    Article  PubMed  CAS  Google Scholar 

  • Tenhaken, R., and Rubel, C., 1997. Salicylic acid is needed in hypersensitive cell death in soybean but does not act as a catalase inhibitor. Plant Physiol., 115: 291–298.

    PubMed  CAS  Google Scholar 

  • Thaler, J. S., Fidantsef, A.L., Duffey, S. S., and Bostock, R. M., 1999. Trade-offs in plant defense against pathogens and herbivores: A field demonstration of chemical elicitors of induced resistance. J. Chem. Ecol., 25: 1597–1609.

    Article  CAS  Google Scholar 

  • Torres, M. A., Dangl, J. L., and Jones, J. D. G., 2002. Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc. Natl. Acad. Sci. USA., 99: 517-522.

    Article  PubMed  CAS  Google Scholar 

  • Turner, J. G., Ellis, C., and Devoto, A., 2002. The jasmonate signal pathway. Plant. Cell, 14: S153–S164.

    PubMed  CAS  Google Scholar 

  • Uquillas, C., Letelier , I., Blanco, F., Jordana, X., and Holuigue, L., 2004. NPR1-independent activation of immediate early salicylic acid-responsive genes in Arabidopsis. Mol. Plant. Micro. Inter., 17: 34-42.

    Article  CAS  Google Scholar 

  • Vallèlian-Bindschedler, L., Mètraux, J. P., and Schweizer, P., 1998. Salicylic acid accumulation in barley is pathogen specific but not required for defensegene activation, Mol. Plant Micro. Inter., 11: 702–705.

    Article  Google Scholar 

  • Van Loon, L.C., 2000. Systemic induced resistance. In Mechanisms of Resistance to Plant Diseases, ed. A.J. Slusarenko, R,.S.S. Fraser, L.C. Van Loon, pp. 521–74. Dordrecht, Netherlands: Kluwer.

    Google Scholar 

  • Van Wees, S. C. M., and Glazebrook, J. 2003. Loss of non-host resistance of Arabidopsis NahG to Pseudomonas syringae pv. phaseolicola is due to degradation products of salicylic acid. Plant J., 33:733-742.

    Article  PubMed  Google Scholar 

  • Van Wees, S. C. M., De Swart, E. A. M., Van Pelt, J. A., Van Loon, L. C., and Pieterse, C. M. J., 2000. Enhancement of induced disease resistance by simultaneous activation of salicylate and jasmonate-dependent defense pathways in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA., 97: 8711–8716.

    Article  PubMed  Google Scholar 

  • Verberne M. C. Budi Muljono, A. B., and Verpoorte, R., 1999. Salicylic acid biosynthesis, In: Hooykaas, P. P. J., Hall, M. A., Libbenga, K. R., eds., Biochemistry and Molecular Biology of Plant Hormones. Amsterdam, Netherlands: Elsevier. 295-312.

    Google Scholar 

  • Vernooij, B., Friedrich, L., Morse, A., Reist, R., Kolditz-Jawhar, R., Ward, E., Uknes, S., Kessmann, H., and Ryals, J., 1994. Salicylic acid is not the translocated signal responsible for inducing systemic acquired resistance but is required in signal transduction. Plant Cell, 6: 959–965.

    Article  PubMed  CAS  Google Scholar 

  • Vidal, S., Ponce de Lèon, I., Denecke, J., and Palva, T. E., 1997. Salicylic acid and the plant pathogen Erwinia carotovorainduce defense genes via antagonistic pathways. Plant J., 11: 115–123.

    Article  CAS  Google Scholar 

  • Wang, K. L. C., Li, H., and Ecker, J. R., 2002. Ethylene biosynthesis and signaling networks. Plant Cell, 14: S131–S151.

    PubMed  CAS  Google Scholar 

  • Wang, D., Weaver, D.N., Kesharwani, M., and Dong, X., 2005. Induction of protein secretory pathway is required for systemic acquired resistance. Science, 308: 1036-1040.

    Article  PubMed  CAS  Google Scholar 

  • Wasternack, C., Atzorn, R., Jarosch, B., and Kogel, K.H., 1994. Induction of a thionin, the jasmonate-induced 6 kDa protein of barley by 2,6,-dichloroisonicotinic acid. J. Phytopath., 140: 280-284.

    CAS  Google Scholar 

  • Weissman, G., 1991. Aspirin. Scient. Amer., 264: 84-90.

    Article  Google Scholar 

  • White, R. F., 1979. Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco. Virology, 99: 410-412.

    Article  CAS  PubMed  Google Scholar 

  • Wiermer, M., Feys, B.J., and Parker, J.E., 2005. Plant immunity: the EDS1 regulatory node. Curr. Opin. Plant. Biol., 8: 383–389.

    Article  PubMed  CAS  Google Scholar 

  • Wildermuth, M.C., Dewdney, J., Wu, G., and Ausubel, F.M., 2001. Isochorismate synthase is required to synthesize salicylic acid for plant defense. Nature, 414: 562-565.

    Article  PubMed  CAS  Google Scholar 

  • Xiao, S., Brown, S., Patrick, E., Brearley, C., and Turner, J.G., 2003. Enhanced transcription of the Arabidopsis disease resistance genes RPW8.1 and RPW8.2 via a salicylic acid-dependent amplification circuit is required for hypersensitive cell death. Plant Cell, 15: 87-95.

    Article  CAS  Google Scholar 

  • Xu, Y., Chang, P. F. L., Liu, D., Narasimhan, M. L., Raghothama, K.G., Hasegawa, P. M., and Bressan, R. A.., 1994. Plant defense genes are synergistically induced by ethylene and methyl jasmonate. Plant Cell, 6: 1077–1085.

    Article  PubMed  CAS  Google Scholar 

  • Yang, Y., Qi, M., and Mei, C., 2004. Endogenous salicylic acid protects rice plants from oxidative damage caused by aging as well as biotic and abiotic stress. Plant J., 40: 909- glucosyltransferase in oat roots. Plant Physiol., 100: 1114-1119.

    Google Scholar 

  • Yalpani, N., Shulaev, V., and Raskin, I., 1993. Endogenous salicylic acid levels correlate with accumulation of pathogenesis-related proteins and virus resistance in tobacco. Phytopath., 83: 702-708.

    Article  CAS  Google Scholar 

  • Yalpani, N., Silverman, P., Wilson, T.M.A., Kleier, D.A., and Raskin, I., 1991. Salicylic acid is a systemic signal and an inducer of pathogenesis-related proteins in virus-infected tobacco. Plant Cell, 3: 809-818.

    Article  PubMed  CAS  Google Scholar 

  • Yoshioka, K., Kachroo, P.K., Tsui, F., Sharma, S.B., Shah, J., and Klessig, D.F., 2001. Environmentally-sensitive SA-dependent defense responses in the cpr22 mutant of Arabidopsis. Plant J., 26: 447-459.

    Article  PubMed  CAS  Google Scholar 

  • Yu, D., Chen, C., and Chen, Z. 2001. Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression. Plant Cell, 13: 1527-1539.

    Article  PubMed  CAS  Google Scholar 

  • Yu, D., Liu, Y., Fan, B., Klessig, D.F., and Chen, Z. 1997. Is the high basal level of salicylic acid important for disease resistance in potato? Plant Physiol., 115: 343-349.

    PubMed  CAS  Google Scholar 

  • Zhang, Y., Tessaro, M. J., Lassner, M., and Li, X., 2003. Knockout analysis of Arabidopsis transcription factors TGA2, TGA5, and TGA6 reveals their redundant and essential roles in systemic acquired resistance. Plant Cell, 15: 2647–2653.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Chaturvedi, R., Shah, J. (2007). Salicylic Acid in Plant Disease Resistance. In: Hayat, S., Ahmad, A. (eds) Salicylic Acid: A Plant Hormone. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5184-0_12

Download citation

Publish with us

Policies and ethics