Skip to main content

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 208))

  • 1009 Accesses

Abstract

These lecture notes on 2D growth processes are divided in two parts. The first part is a non-technical introduction to stochastic Loewner evolutions (SLEs). Their relationship with 2D critical interfaces is illustrated using numerical simulations. Schramm’s argument mapping conformally invariant interfaces to SLEs is explained. The second part is a more detailed introduction to the mathematically challenging problems of 2D growth processes such as Laplacian growth, diffusion limited aggregation (DLA), etc. Their description in terms of dynamical conformal maps, with discrete or continuous time evolution, is recalled. We end with a conjecture based on possible dendritic anomalies which, if true, would imply that the Hele-Shaw problem and DLA are in different universality classes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Belavin, A. Polyakov, A. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys. B241, 333–380, (1984).

    Article  MathSciNet  ADS  Google Scholar 

  2. J. Cardy, J. Phys. A25 (1992) L201–206. The rigourous proof is in S. Smirnov, C.R. Acad. Sci. Paris 333 (2001) 239–244.

    MathSciNet  ADS  Google Scholar 

  3. G. Watts, J. Phys A29 (1996) L363–368. The rigourous proof is in J. Dubédat, Excursion Decompositions for SLE and Watts’ crossing formula, preprint, arXiv:math.PR/0405074

    MathSciNet  ADS  Google Scholar 

  4. O. Schramm, Israel J. Math., 118, 221–288, (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. G. Lawler, O. Schramm and W. Werner, (I): Acta Mathematica 187 (2001) 237–273; arXiv:math.PR/9911084 G. Lawler, O. Schramm and W. Werner, (II): Acta Mathematica 187 (2001) 275–308; arXiv:math.PR/0003156 G. Lawler, O. Schramm and W. Werner, (III): Ann. Henri Poincar?e 38 (2002) 109–123. arXiv:math.PR/0005294.

    Article  MathSciNet  MATH  Google Scholar 

  6. S. Rohde and O. Schramm, arXiv:math.PR/0106036; and references therein.

    Google Scholar 

  7. V. Beffara, The dimension of the SLE curves, arXiv:math.PR/0211322.

    Google Scholar 

  8. J. Dubédat, SLE(κ, ρ) martingales and duality, to appear in Ann. Probab. arXiv:math.PR/0303128

    Google Scholar 

  9. G. Lawler, introductory texts, including the draft of a book, may be found at http://www.math.cornell.edu/~lawler W. Werner, Lectures notes of the 2002 Saint Flour summer school

    Google Scholar 

  10. M. Bauer and D. Bernard, Commun. Math. Phys. 239 (2003) 493–521, arXiv:hep-th/0210015, and Phys. Lett. B543 (2002) 135–138; M. Bauer and D. Bernard, Phys. Lett. B557 (2003) 309–316, arXiv-hep-th/0301064; M. Bauer and D. Bernard, Ann. Henri Poincaré 5 (2004) 289–326, arXiv:math-ph/0305061. M. Bauer and D. Bernard, SLE, CFT and zig-zag probabilities, arXiv:math-ph/0401019. M. Bauer, D. Bernard and J. Houdayer, Dipolar SLEs, arXiv:math-ph/0411038

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. R. Friedrich and W. Werner, Conformal restriction, highest weight representations and SLE, arXiv:math-ph/0301018.

    Google Scholar 

  12. B. Duplantier Conformal Fractal Geometry and Boundary Quantum Gravity, arXiv:mathph/0303034.

    Google Scholar 

  13. John B. Conway, Functions of One Complex Variable II, Springer-Verlag, New York, New York, 1995

    MATH  Google Scholar 

  14. D. Bensimon, L. Kadanoff, S. Liang, B. Shraiman, C. Tang, Rev. Mod. Phys. 58 (1986) 977, and references therein.

    Article  ADS  Google Scholar 

  15. T. Witten and L. Sander, Phys. Rev. Lett. 47 (1981) 1400.

    Article  ADS  Google Scholar 

  16. L. Niemeyer, L. Pietronero and H. Wiesmann, Phys. Rev. Lett. 52 (1984) 1033.

    Article  MathSciNet  ADS  Google Scholar 

  17. M. Hasting and S. Levitov, Physica D116 (1998) 244.

    ADS  Google Scholar 

  18. T. Hasley, Physics Today, 53, Nov. 2000, 36–41; M. Bazant, D. Crowdy, Conformal methods for interfacial dynamics, arXiv:condmat/0409439, and references therein.

    Google Scholar 

  19. E. Somfai, R. Ball, J. deVita, L. Sander, ArXiv:cond-mat/0304458.

    Google Scholar 

  20. L. Carleson and N. Makarov, Commun. Math. Phys. 216 (2001) 583.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. B. Shraiman, D. Bensimon, Phys. Rev A 30 (1984) 2840.

    Article  MathSciNet  ADS  Google Scholar 

  22. S. Richardson, Euro. J. of Appl. Math. 12 (2001) 571.

    MATH  Google Scholar 

  23. I. Krichever, M. Mineev-Weinstein, P. Wiegmann and A. Zabrodin, arXiv:nlin.SI/0311005, and refs. therein.

    Google Scholar 

  24. B. Davidovitch, H. Hentschel, Z. Olami, I. Procaccia, L. Sander, E. Somfai, Phys. Rev. E59 (1999) 1368. M. Jensen, A. Levermann, J. Mathiesen, I. Procaccia, Phys. Rev. E65 (2002) 046109.

    MathSciNet  ADS  Google Scholar 

  25. M. Hastings, arXiv:cond-mat/0103312.

    Google Scholar 

  26. H. Hentschel, A. Levermann, I. Procaccia, arXiv:cond-mat/0111567.

    Google Scholar 

  27. S. Rohde, M. Zinsmeister, Some remarks on Laplacian growth, preprint April 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Bauer, M., Bernard, D. (2005). Loewner Chains. In: Baulieu, L., de Boer, J., Pioline, B., Rabinovici, E. (eds) String Theory: From Gauge Interactions to Cosmology. NATO Science Series II: Mathematics, Physics and Chemistry, vol 208. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3733-3_3

Download citation

Publish with us

Policies and ethics