Skip to main content

Grain Interaction and Ordering in a Dusty Plasmas

Phenomenon of nonlinear screening in colloidal plasmas

  • Conference paper
Ionic Soft Matter: Modern Trends in Theory and Applications

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 206))

  • 590 Accesses

Abstract

Recent results concerning the grain interactions and ordering in colloidal plasmas are presented. The chapter focuses on the phenomenon of nonlinear screening and its effects on the structure of colloidal plasmas, the role of trapped ions in grain screening, and the effects of strong collisions in the plasma background. It is shown that the above effects may strongly modify the properties of the grain screening giving rise to considerable deviation from the conventional Debye-Hückel theory as dependent on the physical processes in the plasma background.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Thomas, H., Morfill, G.E., Demmel, V., Goree, J., Feuerbacher, B., and Möhlmann, D. Phys. Rev. Lett., 1994, 73, p. 652.

    Article  ADS  Google Scholar 

  2. Chu, J.H., and Lin, I. Physica, 1994 A205, p. 183.

    ADS  Google Scholar 

  3. Tsytovich, V.N. Phys. Usp., 1997, 40, p. 53.

    Article  ADS  Google Scholar 

  4. Pieransky, P. Contemp. Phys., 1983, 24, p. 25.

    Article  ADS  Google Scholar 

  5. Löwen, H. Phys. Rep., 1994, 237, No. 5, p. 249.

    Article  ADS  Google Scholar 

  6. Derjaguin, B.V., and Landau, L. Acta Physicochimica (USSR), 1941, 14, p. 633.

    Google Scholar 

  7. Verwey, E.J., and Overbeek J.Th.G. (1948). Theory of the Stability of Lyophobic Colloids. Amsterdam: Elsevier.

    Google Scholar 

  8. Meijer, E.J., and Frenkel, D. J. Chem. Phys., 1991, 94, p. 2269.

    Article  ADS  Google Scholar 

  9. Robbins, M.O., Kremer, K., and Grest, G.S. J. Chem. Phys., 1988, 88, p. 286.

    Article  Google Scholar 

  10. Dupont, G. et al. Mol. Phys., 1993, 79, p. 453.

    Article  ADS  Google Scholar 

  11. Fortov, V.E., and Yakubov, I.T. (1992). Physics of Nonideal Plasmas. New York: Hemisphere.

    Google Scholar 

  12. Xu, Y., and Chen, Y.-P. Phys. Scripta, 1999, 60, p. 176.

    Article  ADS  Google Scholar 

  13. Alexander, S., Chaikin, P.M., Grant, P., Morales, G.J., and Pincus, P. J. Chem. Phys., 1984, 80, p. 5776.

    Article  ADS  Google Scholar 

  14. Bernstein, I.B., and Rabinovitz, I.V. Phys. Fluids, 1959, 2, p. 112.

    Article  MATH  ADS  Google Scholar 

  15. Laframboise, J.G., and Parker, L.W. Phys. Fluids, 1973, 15, p. 629.

    Article  ADS  Google Scholar 

  16. Dougherty, J.E., Porteous, R.K., Kilgore, M.D., and Graves, D.B. J. Appl. Phys., 1992, 72, p. 3934.

    Article  ADS  Google Scholar 

  17. Tsytovich, V.N., Khodatayev, Ya.K., and Bingham, R. Comments Plasma Phys. and Control. Fusion, 1996, 17, p. 249.

    Google Scholar 

  18. Bystrenko, T., and Zagorodny, A. Ukr. J. Phys., 2002, 47, No. 4, p. 341.

    Google Scholar 

  19. Goree, J. Phys. Rev. Lett, 1992, 69, p. 277.

    Article  ADS  Google Scholar 

  20. Lampe, M., Joyce, G., Ganguli, G., and Gavrishchaka, V. Phys. Plasmas, 2000, 7, p. 3851.

    Article  ADS  Google Scholar 

  21. Lampe, M., Gavrishchaka, V., Ganguli, G., and Joyce, G. Phys. Rev. Lett., 2001, 86, p. 5378.

    Article  ADS  Google Scholar 

  22. Lampe, M. et al. Proceedings of the Second Capri Workshop on Dusty Plasmas, (ed. de Angelis, U., and Nappi, C.), p. 13, 2001.

    Google Scholar 

  23. Zobnin, A.V., Nefedov, A.P., Sinel’shchikov, V.A., and Fortov, V.E. JETP, 2000, 91, p. 483.

    Article  ADS  Google Scholar 

  24. Pal’, A.F., Starostin, A.N., and Filippov, A.V. Plasma Physics Reports, 2001, 27, p. 143; Fizika Plasmy, (in Russian), 2001, 27, p. 155.

    Article  ADS  Google Scholar 

  25. Pal’, A.F., Serov, A.O., Starostin, A.N., et al. JETP, 2001, 92, p. 235.

    Article  ADS  Google Scholar 

  26. Pal’, A.F., Sivokhin, D.V., Starostin, A.N., Filippov, A.V., and Fortov, V.E. Plasma Physics Reports, 2002, 28, p. 28; Fizika Plazmy, (in Russian), 2002, 28, p. 32.

    Article  ADS  Google Scholar 

  27. Bystrenko, O., and Zagorodny, A. Phys. Lett. A, 1999, 255, p. 325; Cond. Matt. Phys., 1998, 1, p. 169.

    Article  ADS  Google Scholar 

  28. Bystrenko, O., and Zagorodny, A. Phys. Lett. A, 1999, 262, p. 72.

    Article  ADS  Google Scholar 

  29. Bystrenko, O., and Zagorodny, A. Phys. Lett. A, 2000, 274, p. 47.

    Article  ADS  Google Scholar 

  30. Bystrenko, T., and Zagorodny, A. Phys. Lett. A, 2002, 299, p. 383.

    Article  ADS  Google Scholar 

  31. Bystrenko, O., and Zagorodny, A., (to be published).

    Google Scholar 

  32. See for instance: Roberts, S.M., and Shipman, J.S. (1972). Two Point Value Problems: Shooting Methods. New York: Elsevier.

    MATH  Google Scholar 

  33. See for instance: (1979). Monte-Carlo methods is statistical physics, (ed. Binder, K.). Springer.

    Google Scholar 

  34. Schram, P.P.J.M., and Trigger, S.A. Contrib. Plasma Phys., 1997, 37, p. 251.

    Article  ADS  Google Scholar 

  35. Löwen, H., Madden, P.A., Hansen, J.P. Phys. Rev. Lett., 1992, 68, p. 1081.

    Article  ADS  Google Scholar 

  36. Ewald, P. Ann. d. Phys., 1921, 64, p. 253.

    Article  MATH  ADS  Google Scholar 

  37. Tsytovich, V.N., and Havnes, O. Comm. Plasma Phys. Contr. Fusion, 1993, 14, p. 267.

    Google Scholar 

  38. Konopka, U., Morfill, G.E., and Ratke, L. Phys. Rev. Lett., 2000, 84, p. 891.

    Article  ADS  Google Scholar 

  39. See for instance: Hockney, R.W., and Eastwood, J.W. (1981). Computer Simulations Using Particles. McGrow-Hill.

    Google Scholar 

  40. Chandrasekar, S. Rev. Mod. Phys., 1943, 15, p. 1.

    Article  ADS  Google Scholar 

  41. Hacken, H. (1978). Synergetics. Berlin: Springer-Verlag.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Bystrenko, O., Bystrenko, T., Zagorodny, A. (2005). Grain Interaction and Ordering in a Dusty Plasmas. In: Henderson, D., Holovko, M., Trokhymchuk, A. (eds) Ionic Soft Matter: Modern Trends in Theory and Applications. NATO Science Series II: Mathematics, Physics and Chemistry, vol 206. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3659-0_11

Download citation

Publish with us

Policies and ethics