Skip to main content

Quantum Breaking Time for Chaotic Systems with Phase Space Structures

  • Conference paper
Chaotic Dynamics and Transport in Classical and Quantum Systems

Part of the book series: NATO Science Series ((NAII,volume 182))

  • 785 Accesses

Abstract

The breaking time, known also as the Ehrenfest time, of the quantum—classical crossover scales logarithmically with respect to the Planck constant in chaotic systems. A typical dynamical system is not ergodic and not uniformly hyperbolic. Deviations from the logarithmic scale have been observed for systems with phase space structures, even in the case of strong chaos, when the homogeneous hyperbolicity of phase space does not hold. In this case the breaking time depends on scaling properties of phase space structures. Two examples of chaotic motion with di erent kind of phase space structures are presented here. The first example is quantum flights studied in the kicked rotor in the presence of the accelerator mode island structure. The second example is a model of periodically kicked harmonic oscillator with dissipation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.P. Berman and G.M. Zaslavsky, Physica A 91, 450 (1978).

    Google Scholar 

  2. G.M. Zaslavsky, Phys. Rep. 80, 157 (1981).

    Article  Google Scholar 

  3. G.P. Berman and A.I. Iomin, Phys. Lett. A 95, 79 (1983); Theor. Math. Phys. 77, 1197 (1988) [Teor. Mat. Fiz. 77, 277 (1988)].

    Article  Google Scholar 

  4. D.L. Shepelyansky, Theor. Math. Phys. 49, 925 (1981) [Teor. Mat. Fiz. 49, 117 (1981)]; G.P. Berman and A.R. Kolovsky, Physica D 8, 117 (1983); V.V. Sokolov, Theor. Math. Phys. 61, 1041 (1984) [Teor. Mat. Fiz., 61, 128 (1984)].

    Article  Google Scholar 

  5. B. V. Chirikov, F.M. Izrailev, and D.L. Shepelyansky, Sov. Sci. Rev. C2, 209 (1981).

    Google Scholar 

  6. G.P. Berman and G.M. Zaslavsky, in Quantum Chaos, editors G. Casati, B.V Chirikov. (Cambridge University Press, Cambridge, 1995), p.435.

    Google Scholar 

  7. D. Bambusi, S. Gra, and T. Paul, Asymptotic Anal. 21, 149 (1999).

    Google Scholar 

  8. R.M. Angelo, L. Sanz and K. Furuya, ibid 68, 016206 (2003); A.C. Oliveira, M.C. Nemes and K.M.F. Romero, ibid 68, 036214 (2003); Silvestrov, M.C. Goorden, and C.W.J. Beenakker, Phys. Rev. E 68, 241301 (2003).

    Google Scholar 

  9. P.G. Silvestrov and C.W.J. Beenakker, Phys. Rev. E 65, 035208 (2002); 68, 038202 (2003); S. Tomsovich and E.J. Heller, ibid 68, 038201 (2003).

    Article  Google Scholar 

  10. See list of references in G.M. Zaslavsky, Phys. Rev. E 67 027203 (2003). [15]}

    Article  Google Scholar 

  11. K.B. Efetov and V.R. Kogan, Phys. Rev. B 67, 245312 (2003).

    Article  Google Scholar 

  12. I.L. Aleiner and A.I. Larkin, Phys. Rev. B 54, 14423 (1996).

    Article  Google Scholar 

  13. Y.-C. Lai, E. Ott, and C. Grebogi, Phys. Lett. A 173, 148 (1993).

    Article  Google Scholar 

  14. A. Iomin and G.M. Zaslavsky, Phys. Rev. E 63, 047203 (2001).

    Article  Google Scholar 

  15. A. Iomin and G.M. Zaslavsky, Phys. Rev. E 67 027203 (2003).

    Article  Google Scholar 

  16. J.D. Meiss, Phys. Rev. A 34, 2375 (1986); Rev. Mod. Phys. 64, 795 1992).

    Article  PubMed  Google Scholar 

  17. G.M. Zaslavsky, M. Edelman, and B.A. Niyazov, Chaos, 7, 159 (1997).

    Article  PubMed  Google Scholar 

  18. C.F.F. Karney, Physica D 8, 360 (1983).

    Google Scholar 

  19. J.D. Meiss, E. Ott, Phys. Rev. Lett. 55, 2741 (1985).

    Google Scholar 

  20. J.D. Hanson, J.R. Cary, and J.D. Meiss, J. Stat. Phys. 39, 327 (1985).

    Article  Google Scholar 

  21. S. Fishman, D.R. Grempell and R.E. Prange, Phys. Rev. A 36, 289 (1987).

    Article  PubMed  Google Scholar 

  22. G. Casati, G. Maspero, and D.L. Shepelyansky, Phys. Rev. E 56, 6233 (1997).

    Article  Google Scholar 

  23. D.V. Savin and V.V. Sokolov, Phys. Rev. E 56, 4911 (1997); K.M. Frahm Phys. Rev. E 56, 6237 (1997); R. Ketzmerick, Phys. Rev B 54, 10841 (1996); G. Casati, I. Guarneri, and G. Maspero, Phys. Rev. Let. 84, 63 (2000).

    Article  Google Scholar 

  24. L. Hufnagel, R. Ketzmerick, M. Weiss, Europhys. Lett. 54, 703 (2001).

    Article  Google Scholar 

  25. B. Sundaram and G.M. Zaslavsky, Phys. Rev. E 59, 7231 (1999).

    Article  Google Scholar 

  26. A. Iomin and G.M. Zaslavsky, Chaos 10, 147 (2000).

    Article  PubMed  Google Scholar 

  27. R. Graham, Physica Scripta, 35, 111 (1987); T. Dittrich, R. Graham, Physica Scripta, 40, 409 (1989).

    Google Scholar 

  28. F. Haake, Quantum Signature of Chaos (Springere, Berlin, Heidelberg, 2000).

    Google Scholar 

  29. D. Braun, Dissipative Quantum Chaos and Decoherence, (Springer, Berlin, Heidelberg, 2001).

    Google Scholar 

  30. I. Percival, Quantum State Diffusion, (Cambridge University Press 1998).

    Google Scholar 

  31. T. Dittrich, in Quantum Transport and Dissipation, ed. by T. Dittrich, P. Hänggi, et. all (Wiley-VCH, Weinhem, 1998).

    Google Scholar 

  32. W.H. Zurek, Physics Today, 10, 36 (1991).

    Google Scholar 

  33. G.M. Zaslavsky, Phys. Lett. A 69, 145 (1978); G.M. Zaslavsky and Kh.-R. Ya. Rachko, Sov. Phys. JETP, 49, 1039 (1979).

    Article  Google Scholar 

  34. Q. Wang and L.-S. Young, Commun. Math. Phys. 218, 1 (2001); 225, 275 (2002).

    Article  Google Scholar 

  35. A.A. Vasil’ev, G.M. Zaslavsky, et. all, J.Exp.Teor.Fiz. 94, 170 (1988).

    Google Scholar 

  36. See for example M.O. Scully and M.S. Zubairy Quantum Optics, (Cambridge University Press 1997).

    Google Scholar 

  37. G.M. Zaslavsky, R.Z. Sagdeev, D.A. Usikov and A.A. Chernikov, Weak Chaos and Quasi-Regular Patterns, (Cambridge University Press 1991).

    Google Scholar 

  38. V.V. Afanas’ev, R.Z. Sagdeev, D.A. Usikov, and G.M. Zaslavsky, Phys. Let. A 152, 276 (1990); A. Iomin and G.M. Zaslavsky, Phys. Rev. E 60, 7580 (1999).

    Article  Google Scholar 

  39. G.P. Berman, A.M. Iomin, and G.M. Zaslavsky, Physica D 4, 113 (1981).

    Google Scholar 

  40. W.H. Louisell, Radiation and Noise in Quantum Electronics (McGraw-Hill, New York, 1964).

    Google Scholar 

  41. V.K. Melnikov, in Transport, Chaos and Plasma Physics, II, Proceedings, Marseilles, edited by F. Doveil, S. Benkadda, and Y. Elskens (World Scientific, Singapore, 1996), p. 142.

    Google Scholar 

  42. G.M. Zaslavsky, Chaos 4, 25 (1994); Physica D 76, 110 (1994).

    Article  PubMed  Google Scholar 

  43. V. Rom-Kedar and G.M. Zaslavsky, Chaos, 9, 697 (1999).

    Article  PubMed  Google Scholar 

  44. B.V. Chirikov, Phys. Rep. 52, 263 (1979).

    Article  Google Scholar 

  45. J.D. Hanson, E. Ott, and T.M. Antonsen, Phys. Rev. A 29, 1819 (1984).

    Article  Google Scholar 

  46. S. Benkadda, S. Kassibrakis, R.B. White, and G.M. Zaslavsky, Phys. Rev. E 55, 4907 (1997).

    Article  Google Scholar 

  47. A. Iomin and G.M. Zaslavsky, Chem. Phys. 284, 3 (2002).

    Article  Google Scholar 

  48. G. Casati, G. Maspero, and D.L. Shepelyansky, Phys. Rev. Lett. 82, 524 (1999).

    Article  Google Scholar 

  49. R. Ketzmerick, L. Hufnagel, F. Steinbah, and M. Weiss, Phys. Rev. Lett. 85, 1214 (2000)

    Article  PubMed  Google Scholar 

  50. P. Carruthers and M.M. Nieto, Rev. Mod. Phys. 40, 411 (1968).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic Publishers

About this paper

Cite this paper

Iomin, A., Zaslavsky, G. (2005). Quantum Breaking Time for Chaotic Systems with Phase Space Structures. In: Collet, P., Courbage, M., Métens, S., Neishtadt, A., Zaslavsky, G. (eds) Chaotic Dynamics and Transport in Classical and Quantum Systems. NATO Science Series, vol 182. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2947-0_15

Download citation

Publish with us

Policies and ethics