Skip to main content

Fractal Time Random Walk and Subrecoil Laser Cooling Considered as Renewal Processes with Infinite Mean Waiting Times

  • Conference paper
Chaotic Dynamics and Transport in Classical and Quantum Systems

Part of the book series: NATO Science Series ((NAII,volume 182))

Abstract

There exist important stochastic physical processes involving infinite mean waiting times. The mean divergence has dramatic consequences on the process dynamics. Fractal time random walks, a diffusion process, and subrecoil laser cooling, a concentration process, are two such processes that look qualitatively dissimilar. Yet, a unifying treatment of these two processes, which is the topic of this pedagogic paper, can be developed by combining renewal theory with the generalized central limit theorem. This approach enables to derive without technical difficulties the key physical properties and it emphasizes the role of the behaviour of sums with infinite means.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji. Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping. Phys. Rev. Lett., 61:826–829, 1988.

    PubMed  Google Scholar 

  2. F. Bardou. Ph.d. thesis, 1995.

    Google Scholar 

  3. F. Bardou. Cooling gases with Lévy flights: using the generalized central limit theorem in physics. In O. E. Barndorff-Nielsen, S. E. Graversen, and T. Mikosh, editors, Lévy processes: theory and applications, Miscillanea no. 11, Aarhus, 1999. MaPhySto.

    Google Scholar 

  4. F. Bardou, J.-P. Bouchaud, A. Aspect, and C. Cohen-Tannoudji. Lévy Statistics and Laser Cooling. Cambridge University Press, Cambridge, 2002.

    Google Scholar 

  5. F. Bardou, J.-P. Bouchaud, O. Emile, A. Aspect, and C. Cohen-Tannoudji. Subrecoil laser cooling and Lévy flights. Phys. Rev. Lett., 72:203–206, 1994.

    Article  PubMed  Google Scholar 

  6. O. E. Barndorff-Nielsen and F. E. Benth. Laser cooling and stochastics. In M. C. M. de Gunst, C. A. J. Klaassen, and A. W. van der Vaart, editors, State of the Art in Probability and Mathematical Statistics; Festschrift for Willem R. van Zwet, Lecture Notes — Monograph Series, pages 50–71. Inst. Mathematical Statistics, 2000.

    Google Scholar 

  7. J.-P. Bouchaud and A. Georges. Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep., 195:127–293, 1990.

    Article  MathSciNet  Google Scholar 

  8. D. R. Cox. Renewal Theory. Methuen (Wiley), London (New York), 1962.

    Google Scholar 

  9. F. Bardou et al. Communication at the Workshop on aspects of large quantum systems related to Bose-Einstein condensation (Aarhus, April 2004, and to be published).

    Google Scholar 

  10. W. Feller. An introduction to probability theory and its Applications. Volume II. John Wiley and sons, New York, 1971.

    Google Scholar 

  11. C. Godrèche and J. M. Luck. Statistics of the occupation time of renewal processes. J. Stat. Phys., 104:489–524, 2001.

    Article  Google Scholar 

  12. E. W. Montroll and H. Scher. Random walks on lattices IV. Continuous-time walks and influence of absorbing boundaries. J. Stat. Phys., 9:101–135, 1973.

    Article  Google Scholar 

  13. J. Reichel, F. Bardou, M. Ben Dahan, E. Peik, S. Rand, C. Salomon, and C. Cohen-Tannoudji. Raman cooling of cesium below 3 nk: New approach inspired by Lévy flight statistics. Phys. Rev. Lett., 75:4575–4578, 1995.

    Article  PubMed  Google Scholar 

  14. G. Samorodnitsky and M. S. Taqqu. Stable non-Gaussian random processes. Chapman & Hall/CRC, Boca Raton, 1994.

    Google Scholar 

  15. H. Scher, M. F. Shlesinger, and J. T. Bendler. Time-scale invariance in transport and relaxation. Physics Today, pages 26–34, January 1991.

    Google Scholar 

  16. M. F. Shlesinger. Asymptotic solutions of continuous-time random walks. J. Stat. Phys., 10:421–434, 1974.

    Article  Google Scholar 

  17. M. F. Shlesinger. Fractal time in condensed matter. Ann. Rev. Phys. Chem., 39:269–290, 1988.

    Article  Google Scholar 

  18. M. F. Shlesinger, B. J. West, and J. Klafter. Lévy dynamics of enhanced diffusion: Application to turbulence. Phys. Rev. Lett., 58:1100–1103, 1987.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic Publishers

About this paper

Cite this paper

Bardou, F. (2005). Fractal Time Random Walk and Subrecoil Laser Cooling Considered as Renewal Processes with Infinite Mean Waiting Times. In: Collet, P., Courbage, M., Métens, S., Neishtadt, A., Zaslavsky, G. (eds) Chaotic Dynamics and Transport in Classical and Quantum Systems. NATO Science Series, vol 182. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2947-0_12

Download citation

Publish with us

Policies and ethics