Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 182))

Abstract

We give a short refresher on some of the main definitions and results in ergodic theory. This is not intended to be an introduction nor a review of the subject. There are many very good texts about ergodic theory some of them are given in the references.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Barrera, J. Schmeling. Sets of “non typical” points have full topological entropy and full Hausdorff dimension. Israel J. Math. 116, 29–70 (2000).

    Google Scholar 

  2. G.D. Birkho. Proof of the ergodic theorem. Proc. Nat. Acad. Sci. USA, 17, 656–660 (1931).

    Google Scholar 

  3. M. Brin, A. Katok. On local entropy. In Geometric dynamics. Lecture Notes in Math., 1007, 30–38 Springer, Berlin, 1983.

    Google Scholar 

  4. R. Bowen. Equilibrium States and Ergodic Theory of Anosov Diffeomorphisms. Lecture Notes in Mathematics 470. Springer-Verlag, Berlin Heidelberg New York 1975.

    Google Scholar 

  5. P. Collet, J.-P. Eckmann. Oscillations of Observables in 1-Dimensional Lattice Systems. Math. Phys. Elec. Journ. 3, 1–19 (1997).

    Google Scholar 

  6. M. Denker. The central limit theorem for dynamical systems. In Dynamical systems and ergodic theory. Banach Center Publ., 23, 33–62 PWN, Warsaw, 1989.

    Google Scholar 

  7. T. Donarowicz, B. Weiss. Entropy theorems along the time when x visits a set. Illinois Journ. Math. To appear.

    Google Scholar 

  8. P. Doukhan. Mixing. Properties and examples. Lecture Notes in Statistics, 85. Springer-Verlag, New York, 1994.

    Google Scholar 

  9. V. Ivanov. Geometric properties of monotone fluctuations and probabilities of random fluctuations. Siberian Math. Journal 37, 102–129 (1996). Oscillation of means in the ergodic theorem. Doklady Mathematics 53, 263–265 (1996).

    Google Scholar 

  10. A. Kachurovskii. The rate of convergence in the ergodic theorems. Russian Math. Surveys 51, 73–124 (1996).

    Google Scholar 

  11. S. Kalikow. Outline of Ergodic Theory. troy.msci.memphis.edu/quasa/kalikow/kalikow.pdf.

    Google Scholar 

  12. S. Kalikov, B. Weiss. Fluctuations of the ergodic averages. Illinois J. Math. 43, 480–488 (1999).

    Google Scholar 

  13. I. Kornfeld, Y. Sinai, S. Fomin. Ergodic Theory. Springer-Verlag New-York, 1980.

    Google Scholar 

  14. U. Krengel. Ergodic Theorems. Walter de Gruyter, Berlin, New York 1985.

    Google Scholar 

  15. O. Lanford. Entropy and equilibrium states in classical statistical mechanics. In Statistical mechanics and Mathematical Problems. Lecture Notes in Physics 20, 1–113, Springer-Verlag, Berlin 1973.

    Google Scholar 

  16. L. Markus, K. Meyer. Generic Hamiltonian dynamical systems are neither integrable nor ergodic. Memoirs of the American Mathematical Society, 144. American Mathematical Society, Providence, R.I., 1974.

    Google Scholar 

  17. M. Keane. Ergodic theory and subshifts of finite type. In Ergodic theory, symbolic dynamics, and hyperbolic spaces, 35–70. Oxford Sci. Publ., Oxford Univ. Press, New York, 1991.

    Google Scholar 

  18. D. Ornstein. Ergodic Theory, Randomness, and Dynamical Systems. Yale University Press, New Haven London 1974.

    Google Scholar 

  19. D. Ornstein, B. Weiss. Entropy and data compression schemes. stationary random fields. IEEE Trans. Information Theory 39, 78–83 (1993).

    Article  Google Scholar 

  20. K. Petersen. Ergodic Theory. Cambridge University Press, Cambridge 1983. See also http://www.math.unc.edu/Faculty/petersen.

    Google Scholar 

  21. D. Ruelle. Thermodynamic formalism. Addison-Wesley, Reading, 1978.

    Google Scholar 

  22. J. von-Neumann Proof of the quasi ergodic hypothesis. Proc. Nat. Acad. Sci. USA, 18, 70–82 (1932).

    Google Scholar 

  23. K. Reinhold. A smoother ergodic average. Illinois Journ. Math. 44, 843–859 (2000).

    Google Scholar 

  24. Y. Sinai. Introduction to Ergodic Theory. Princeton University Press, Princeton 1976.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic Publishers

About this paper

Cite this paper

Collet, P. (2005). A Short Ergodic Theory Refresher. In: Collet, P., Courbage, M., Métens, S., Neishtadt, A., Zaslavsky, G. (eds) Chaotic Dynamics and Transport in Classical and Quantum Systems. NATO Science Series, vol 182. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2947-0_1

Download citation

Publish with us

Policies and ethics