Skip to main content

Applications of Proteomics Technologies for Drug Discovery

  • Chapter
Proteomics: Biomedical and Pharmaceutical Applications

Conclusions

Introduction of proteomic technologies has added a useful dimension to drug discovery. Proteomics technologies are useful in two important therapeutic areas: cancer and central nervous system. By helping to elucidate the pathomechanism of diseases, proteomics will help the discovery of rational medications that will fit in with the future concept of personalized medicines.

Proteomics technologies are not used alone but rather they are integrated with genomic and chemical approaches. Finally, bioinformatics plays an important role in drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Civelli, O., Saito, Y., Lin, S., et al, 2001, The orphan receptor strategy and the discovery of novel neuropeptides. Trends in Neurosciences 24: 230–237.

    Article  CAS  PubMed  Google Scholar 

  • Ficarro, S.B., McCleland, M.L., Stukenberg, P.T., et al, 2002, Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nature Biotechnology 20: 301–305.

    Article  CAS  PubMed  Google Scholar 

  • Gorg A., Obermaier C., Boguth G., et al, 2000, The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis. 21: 1037–53.

    CAS  PubMed  Google Scholar 

  • Gygi, S.P., Rist, B., Gerber, S.A., et al, 1999, Quantitative analysis of protein mixtures using isotope coded affinity tags. Nature Biotechnology 17: 994–999.

    Article  CAS  PubMed  Google Scholar 

  • Ideker, T., Thorsson, V., Ranish, J.A., et al, 2001, Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292: 929–34.

    Article  CAS  PubMed  Google Scholar 

  • Jain, K. K., 2003, Proteomics: Technologies, Markets and Companies. Jain Pharma Biotech Publications, Basel.

    Google Scholar 

  • Jain, K. K., 2002a, Application of Laser Capture Microdissection to Proteomics. Methods in Enzymology. 356: 157–167.

    Article  CAS  PubMed  Google Scholar 

  • Jain, K. K., 2002b, Proteomics-based anticancer drug discovery and development. Techn Cancer Res & Dev 1: 231–236.

    CAS  Google Scholar 

  • Jain, K. K., 2002c, Role of Neuroproteomics in CNS Drug Discovery. Targets 1: 95–101.

    Article  CAS  Google Scholar 

  • Lach-Trifilieff, E., McKay, R.A., Monia, B.P., et al, 2001, In vitro and in vivo inhibition of interleukin (IL)-5-mediated eosinopoiesis by murine IL-5R alpha antisense oligonucleotide. Am J Respir Cell Mol Biol 24: 116–22.

    CAS  PubMed  Google Scholar 

  • McBeath, G., 2001, Chemical genomics: what will it take and who gets to play? Genome Biology 2: 2005.1–2005.6.

    Google Scholar 

  • McDonald, W.H. and Yates, J.R. 3rd, 2002, Shotgun proteomics and biomarker discovery. Dis Markers. 18: 99–105.

    CAS  PubMed  Google Scholar 

  • Moseley, M.A., 2001, Current trends in differential expression proteomics: isotopically coded tags. Trends in Biotechnology 19 Suppl:S10–S16.

    Article  CAS  PubMed  Google Scholar 

  • Nattkemper, T.W., Ritter, H.J., Schubert, W., 2001, A neural classifier enabling high-throughput topological analysis of lymphocytes in tissue sections. IEEE Trans Inf Technol Biomed. 5: 138–49.

    Article  CAS  PubMed  Google Scholar 

  • Raamsdonk, L.M., Teusink, B., Broadhurst, D., et al, 2001, A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nature Biotechnol 19: 45–50.

    CAS  Google Scholar 

  • Resing, K. A., 2002, Analysis of signaling pathways using functional proteomics. Ann N Y Acad Sci 971: 608–14.

    Article  CAS  PubMed  Google Scholar 

  • Rubenwolf, S., Niewohner, J., Meyer, E., et al, 2002, Functional proteomics using chromophore-assisted laser inactivation. Proteomics. 2: 241–6.

    Article  CAS  PubMed  Google Scholar 

  • Salomon, A.R., Ficarro, S.B., Brill, L.M., et al, 2003, Profiling of tyrosine phosphorylation pathways in human cells using mass spectrometry. PNAS USA 100: 443–8.

    CAS  PubMed  Google Scholar 

  • Zheng, X.F.S., Chan., T.F., 2002, Chemical genomics in the global study of protein functions. Drug Discovery Today 7: 197–205.

    CAS  PubMed  Google Scholar 

  • Ziauddin, J. and Sabatini, D.M., 2001, Microarrays of cells expressing defined cDNAs. Nature. 411: 107–10.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Jain, K.K. (2004). Applications of Proteomics Technologies for Drug Discovery. In: Hondermarck, H. (eds) Proteomics: Biomedical and Pharmaceutical Applications. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2323-5_9

Download citation

  • DOI: https://doi.org/10.1007/1-4020-2323-5_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-2322-4

  • Online ISBN: 978-1-4020-2323-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics