Skip to main content

Unit Vector Fields that are Critical Points of the Volume and of the Energy: Characterization and Examples

  • Chapter
Complex, Contact and Symmetric Manifolds

Part of the book series: Progress in Mathematics ((PM,volume 234))

Summary

In the last few years, many works have appeared containing examples and general results on harmonicity and minimality of vector fields in different geometrical situations. This survey will be devoted to describe many of the known examples, as well as the general results from where they are obtained.

Supported by projects BFM2001-3548 (DGI, Spain) and AVCiT, Grupos03/169 (Generalitat Valenciana)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Berndt: Real hypersurfaces with constant principal curvatures in complex hyperbolic space. J. Reine Agew. Math. 395, 132–141 (1989).

    MATH  MathSciNet  Google Scholar 

  2. J. Berndt: Riemannian geometry of complex two-plane Grassmannians. Rend. Sem. Mat. Univ. Pol. Torino 55, 19–83 (1997).

    MATH  MathSciNet  Google Scholar 

  3. J. Berndt and Y J. Suh: Real hypersurfaces in complex two-plane Grassmannians. Monatsh. Math. 127, 1–14 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  4. J. Berndt, L. Vanhecke and L. Verhóczki: Harmonic and minimal unit vector fields on Riemannian symmetric spaces. Illinois J. Math. 47, 1273–1286 (2003).

    MATH  MathSciNet  Google Scholar 

  5. D. E. Blair: Riemannian geometry of contact and symplectic manifolds. Progress in Math. 203, (Birkhäuser: Boston, Basel, Berlin) (2002).

    Google Scholar 

  6. D. E. Blair, T. Koufogiorgos and B. J. Papantoniou: Contact metric manifolds satisfying a nullity condition. Israel J. Math. 91, 189–214 (1995).

    MATH  MathSciNet  Google Scholar 

  7. E. Boeckx: A full classification of contact metric (k, μ)-spaces. Illinois J. Math. 44, 212–219 (2000).

    MATH  MathSciNet  Google Scholar 

  8. E. Boeckx, J. C. González-Dávila and L. Vanhecke: Stability of the geodesic flow for the energy. Comment. Math. Univ. Carolinae 43, 201–213 (2002).

    MATH  Google Scholar 

  9. E. Boeckx, J. C. González-Dávila and L. Vanhecke: Energy of radial vector fields on compact rank-one symmetric spaces. Ann. Global Anal. Geom. 23, 29–52 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  10. E. Boeckx and L. Vanhecke: Harmonic and minimal vector fields on tangent and unit tangent bundles. Diffential Geom. Appl. 13, 77–93 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  11. E. Boeckx and L. Vanhecke: Minimal radial vector fields. Bull. Math. Soc. Sc. Math. Roumanie 93, 181–185 (2000).

    MathSciNet  Google Scholar 

  12. E. Boeckx and L. Vanhecke: Harmonic and minimal radial vector fields. Acta Math. Hungar. 90, 317–331 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  13. E. Boeckx and L. Vanhecke: Isoparametric functions and harmonic and minimal unit vector fields. In: M. Fernández, J. A. Wolf (eds) Global differential geometry: The mathematical legacy of Alfred Gray. Contemp. Mathematics, 288, Amer. Math. Soc., Providence, RI, (2001).

    Google Scholar 

  14. V. Borrelli, F. Brito and O. Gil-Medrano: The infimum of the Energy of unit vector fields on odd-dimensional spheres. Ann. Global Anal. Geom. 23, 129–140 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  15. V. Borrelli and O. Gil-Medrano: Acritical radius for unit Hopf vector fields on spheres. To appear.

    Google Scholar 

  16. F. Brito: Total Bending of flows with mean curvature correction. Diff. Geom. and its Appl. 12, 157–163 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  17. F. Brito, P. Chacón and A. M. Naveira: On the volume of unit vector fields on spaces of constant sectional curvature, Commentarii Math. Helv. to appear.

    Google Scholar 

  18. F. Brito and M. Salvai: Soleinoidal unit vector fields with minimum energy. Preprint.

    Google Scholar 

  19. F. Brito and P. Walczak: On the energy of unit vector fields with isolated singularities. Ann. Math. Polon. 73, 269–274 (2000).

    MATH  MathSciNet  Google Scholar 

  20. G. Calvaruso, D. Perrone and L. Vanhecke: Homogeneity on three-dimensional contact metric manifolds, Israel J. Math. 114, 301–321 (1999).

    MATH  MathSciNet  Google Scholar 

  21. P. M. Chacón, A. M. Naveira and J. M. Weston: On the energy of distributions, with application to the quaternionic Hopf fibration. Monatsh. Math. 133, 281–294 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  22. B-Y. Choi and J-W. Yim: Distributions on Riemannian manifolds, which are harmonic maps. Tôhoku Math. J. 55, 175–188 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  23. O. Gil-Medrano: Relationship between volume and energy of vector fields. Differential Geom. Appl. 15, 137–152 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  24. O. Gil-Medrano: Volume and energy of vector fields on spheres. A survey. In: O. Gil-Medrano and V. Miquel (eds) Differential geometry, Valencia 2001, World Sci. Publishing, River Edge, NJ, (2002).

    Google Scholar 

  25. O. Gil-Medrano, C. González-Dávila and L. Vanhecke: Harmonic and minimal invariant unit vector fields on homogeneous Riemannian manifolds. Houston J. Math. 27, 377–409 (2001).

    MATH  MathSciNet  Google Scholar 

  26. O. Gil-Medrano, C. González-Dávila and L. Vanhecke: Harmonicity and minimality of oriented distributions. Israel J. Math. to appear.

    Google Scholar 

  27. O. Gil-Medrano and A. Hurtado: Space-like energy of time-like unit vector fields on a Lorentzian manifold. J. Geom. and Phys. 51, 82–100 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  28. O. Gil-Medrano and A. Hurtado: Volume, energy and generalized energy of unit vector fields on Berger’s spheres. Stability of Hopf vector fields. Preprint.

    Google Scholar 

  29. O. Gil-Medrano and E. Llinares-Fuster: Second variation of volume and energy of vector fields. Stability of Hopf vector fields. Math. Annalen 320, 531–545 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  30. O. Gil-Medrano and E. Llinares-Fuster: Minimal unit vector fields. Tôhoku Math. J. 54, 71–84 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  31. H. Gluck and W. Gu: Volume-preserving great circle flows on the 3-sphere, Geometria Dedicata 88, 259–282 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  32. H. Gluck and W. Ziller: On the volume of a unit vector field on the three-sphere. Comment. Math. Helv. 61, 177–192 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  33. S. I. Goldberg, D. Perrone and G. Toth: Curvature of contact three-manifolds with critical metrics. In: F. J. Carreras, O. Gil-Medrano and A. M. Naveira (eds) Differential Geometry, Lec. Notes Math. 1410, (Springer-Verlag: Berlin, Heidelberg, New York) (1989).

    Google Scholar 

  34. J. C. González-Dávila and L. Vanhecke: Examples of minimal unit vector fields. Ann. Global Anal. Geom. 18, 385–404 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  35. J. C. González-Dávila and L. Vanhecke: Minimal and harmonic characteristic vector fields on three-dimensional contact metric manifolds. J. Geom. 72, 65–76 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  36. J. C. González-Dávila and L. Vanhecke: Energy and volume of unit vector fields on three-dimensional Riemannian manifolds. Differential Geom. Appl. 16, 225–244 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  37. J. C. González-Dávila and L. Vanhecke: Invariant harmonic unit vector fields on Lie groups. Boll. Un. Mat. Ital. B 5, 377–403 (2002).

    Google Scholar 

  38. D.-S. Han and J.-W. Yim: Unit vector fields on spheres which are harmonic maps. Math Z. 227, 83–92 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  39. T. Ishihara: Harmonic sections of tangent bundles. J. Math. Tokushima Univ. 13, 23–27 (1979).

    MATH  MathSciNet  Google Scholar 

  40. D. L. Johnson: Volume of flows. Proc. of the Amer. Math. Soc. 104, 923–932 (1988).

    Article  MATH  Google Scholar 

  41. M. Kimura: Real hypersurfaces and complex submanifolds in complex projective spaces. Trans. of the Amer. Math. Soc. 296, 137–149 (1986).

    Article  MATH  Google Scholar 

  42. J.L. Konderak: On sections of fiber bundles wich are harmonic maps. Bull. Math. Soc. Sc. Math. Roumanie (N.S.) 90, 341–352 (1999).

    MathSciNet  Google Scholar 

  43. T. Koufogiorgos and C. Tsichlias: On the existence of a new class of contact metric manifolds. Canad. Math. Bull. 43, 440–447 (2000).

    MATH  MathSciNet  Google Scholar 

  44. O. Kowalski and F. Tricerri: Riemannian manifolds of dimension n ≤ 4 admitting a homogeneous structure of class T 2. Conferenze del Seminario di Matematica Univ. di Bari, 222, Laterza, Bari (1987).

    Google Scholar 

  45. E. Llinares-Fuster: Energía y volumen de campos de vectores. Puntos críticos y estabilidad. Tesis Doctoral, Universitat de València (2002).

    Google Scholar 

  46. S. L. Pedersen: Volumes of vector fields on spheres. Trans. Amer. Math. Soc. 336, 69–78 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  47. D. Perrone: Harmonic characteristic vector fields on contact metric three-manifolds. Bull. Australian Math. Soc. 67, 305–315 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  48. D. Perrone: Contact metric manifolds whose characteristic vector field is a harmonic vector field. Differential Geom. Appl. to appear.

    Google Scholar 

  49. P. Rukimbira: Criticality of K-contact vector fields. J. Geom. Phys. 40, 209–214 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  50. M. Salvai: On the volume and the energy of sections of a circle bundle over a compact Lie group. In: O. Gil-Medrano and V. Miquel (eds) Differential geometry, Valencia 2001, World Sci. Publishing, River Edge, NJ, (2002).

    Google Scholar 

  51. M. Salvai: On the energy of sections of trivializable sphere bundles. Rend. Sem. Mat. Univ. Pol. Torino 60, 147–155 (2002).

    MATH  MathSciNet  Google Scholar 

  52. M. Salvai: On the volume of unit vector fields on a compact semi-simple Lie group. J. Lie Theory 13, 457–464 (2003).

    MATH  MathSciNet  Google Scholar 

  53. F. Tricerri and L. Vanhecke: Homogeneous structures on Riemannian manifolds. London Math. Soc. Lect. Note Series 83, Cambridge Univ. Press, Cambridge (1983).

    Google Scholar 

  54. F. Tricerri and L. Vanhecke: Curvature homogeneous Riemannian manifolds. Ann. Scient. Éc. Norm. Sup. 22, 535–554 (1989).

    MATH  MathSciNet  Google Scholar 

  55. K. Tsukada and L. Vanhecke: Minimal and harmonic unit vector fields in G 2(ℂm+2) and its dual space. Monatsh. Math. 130, 143–154 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  56. K. Tsukada and L. Vanhecke: Invariant minimal unit vector fields on Lie groups. Periodica Math. Hung. 40, 123–133 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  57. K. Tsukada and L. Vanhecke: Minimality and harmonicity for Hopf vector fields. Illinois J. Math. 45, 441–451 (2001).

    MATH  MathSciNet  Google Scholar 

  58. G. Wiegmink: Total bending of vector fields on Riemannian manifolds. Math. Ann. 303, 325–344 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  59. G. Wiegmink: Total bending of vector fields on the sphere S 3. Differential Geom. Appl. 6, 219–236 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  60. C. M. Wood: An existence theorem for harmonic sections. Manuscripta Math. 68, 69–75 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  61. C. M. Wood: Aclass of harmonic almost-product structures. J. Geom. Phys. 14, 25–42 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  62. C. M. Wood: Harmonic almost-complex structures. Compositio Math. 99, 183–212 (1995).

    MATH  MathSciNet  Google Scholar 

  63. C. M. Wood: The energy of Hopf vector fields. Manuscripta Math. 101, 71–88 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  64. C. M. Wood: Harmonic sections of homogeneous fiber bundles. Differential Geom. Appl. 19, 193–210 (2003).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Professor Lieven Vanhecke

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Boston

About this chapter

Cite this chapter

Gil-Medrano, O. (2005). Unit Vector Fields that are Critical Points of the Volume and of the Energy: Characterization and Examples. In: Kowalski, O., Musso, E., Perrone, D. (eds) Complex, Contact and Symmetric Manifolds. Progress in Mathematics, vol 234. Birkhäuser Boston. https://doi.org/10.1007/0-8176-4424-5_12

Download citation

Publish with us

Policies and ethics