Skip to main content

Insights into Molecular and Aggregate Structures of Asphaltenes Using HRTEM

  • Chapter
Asphaltenes, Heavy Oils, and Petroleomics

Abstract

The recent resolution of the controversy surrounding asphaltene molecular weight coupled with increasing understanding of their molecular structure has enabled the understanding of asphaltene behavior. It has been shown previously that larger ring systems require more alkane substituents to maintain a balance between ring-stacking propensity vs. steric repulsion. Here, stacking and its disruption in asphaltenes and aromatic ring systems are explored using high-resolution transmission electron microscopy (HRTEM). The TEM images are consistent with the presence of aromatic ring systems of ~1 nm diameter for petroleum asphaltenes and 0.7 nm for coal asphaltenes. It is shown that molecularly disparate asphaltenes exhibit stacking invariants. Solubility data herein suggest these stacking invariants naturally follow from the solubility classification of asphaltenes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Crick, F. (1988). What Mad Pursuit, a personal View of Scientific Discovery, Basic Books, New York.

    Google Scholar 

  2. Chilingarian, G.V. and T.F. Yen (eds.) (1978). Bitumens, Asphalts, and Tar Sands. Elsevier Scientific Publishing, New York.

    Google Scholar 

  3. Bunger, J.W. and N.C. Li (eds.), (1984). Chemistry of Asphaltenes. American Chemical Society, Washington, DC.

    Google Scholar 

  4. Sheu, E. Y. and O.C. Mullins (eds.) (1995). Asphaltenes: Fundamentals and Applications. Plenum, New York.

    Google Scholar 

  5. Mullins, O.C. and E.Y. Sheu (eds.) (1998). Structures and Dynamics of Asphaltenes. Plenum, New York.

    Google Scholar 

  6. Groenzin, H. and O.C. Mullins (1999). Asphaltene molecular size and structure, J. Phys. Chem. A.. 103, 11237.

    Article  CAS  Google Scholar 

  7. Groenzin, H. and O.C. Mullins (2000). Molecular sizes of asphaltenes from different origin, Energy Fuels 14, 677.

    Article  CAS  Google Scholar 

  8. Boduszynski, M.M. (1988). Composition of heavy petroleums. 2. Molecular characterization, Energy Fuels 2, 597.

    Article  CAS  Google Scholar 

  9. Miller, J.T., R.B. Fisher, P. Thiyagarajan, R.E. Winans, and J.E. Hunt (1998). Subfractionation and characterization of mayan asphaltene, Energy Fuels 12, 1290.

    Article  CAS  Google Scholar 

  10. Buenrostro-Gonzalez, E., H. Groenzin, C. Lira-Galeana, and O.C. Mullins (2001). The overriding chemical principles that define asphaltenes, Energy Fuels 15, 972.

    Article  CAS  Google Scholar 

  11. Hortal, A.R., B. Martinez-Haya, M.D. Lobato, J.M. Pedrosa, and S. Lago (2006). On the determination of molecular weight distributions of asphaltenes and their aggregates in laser desorption ionization experiments, J. Mass Spec. 41, 960–968.

    Article  CAS  Google Scholar 

  12. Sheu, E.Y., M.M. De Tar, and D.A. Storm (1991). Rheological properties of vacuum residue fractions in organic solvents, Fuel 70, 1151.

    Article  CAS  Google Scholar 

  13. George, G.N. and M.L. Gorbaty (1989). Sulfur K-edge x-ray absorption spectroscopy of petroleum asphaltenes and model compounds, J. Am. Chem. Soc. 111, 3182.

    Article  CAS  Google Scholar 

  14. Kelemen, S.R., G.N. George, and M.L. Gorbaty (1990). Direct determination and quantification of sulphur forms in heavy petroleum and coals : 1. The X-ray photoelectron spectroscopy (XPS) approach, Fuel 69, 939.

    Article  CAS  Google Scholar 

  15. Waldo, G.S., O.C. Mullins, J.E. Penner-Hahn, and S.P. Cramer (1992). Determination of the chemical environment of sulfur in petroleum asphaltenes by X-ray absorption spectroscopy, Fuel 71, 53.

    Article  CAS  Google Scholar 

  16. Mitra-Kirtley, S., O.C. Mullins, J. van Elp, S.J. George, J. Chen, and S.P. Cramer (1993). Determination of the nitrogen chemical structures in petroleum asphaltenes using XANES spectroscopy, J. Am. Chem. Soc. 115, 252.

    Article  CAS  Google Scholar 

  17. Bergmann, U., H. Groenzin, O.C. Mullins, P. Glatzel, J. Fetzer, and S.P. Cramer (2003). Carbon K-edge X-ray Raman speetroscopy supports simple yet powerful description of aromatic hydrocarbons and asphaltenes, Chem. Phys. Lett. 369, 184.

    Article  CAS  Google Scholar 

  18. Gordon, M.L., D. Tulumello, G. Cooper, A.P. Hitchcock, P. Glatzel, O.C. Mullins, S.P. Cramer, and U. Bergmann (2003). Inner shell excitation speetroscopy of fused aromatic molecules by electron energy loss and X-ray Raman techniques, J. Phys. Chem. A. 107(41), 8512.

    Article  CAS  Google Scholar 

  19. Ruiz-Morales, Y. (2002). HOMO-LUMO gap as an index of molecular size and structure for polycyclic aromatic hydrocarbons (PAHs) and asphaltenes: a theoretical study, J. Phys. Chem. A. 106(46), 11283.

    Article  CAS  Google Scholar 

  20. Millward, G.R. and D.A. Jefferson (1978). In: P.A.Thrower (ed.), Chemistry and Physics of Carbon. Marcel Dekker, New York, Vol. 14 pp. 1–78.

    Google Scholar 

  21. Furuta, T., Y. Yamashita, and M. Shiraishi (1989). Tanso 140, 241–247.

    CAS  Google Scholar 

  22. Davis, K.A., R.H. Hurt N.Y.C. Yang, and T.H. Headley (1995). Combust. Flame 100, 31–40.

    Article  CAS  Google Scholar 

  23. Palotás, Á.B., L.C. Rainey, A.F. Sarofim, J.B.V. Sande, and P. Ciambelli (1996). Effect of oxidation on the microstructure of carbon blacks, Energy Fuels 10, 254–259.

    Article  Google Scholar 

  24. Sharma, A., T. Kyotani, and A. Tomita (1999). A new quantitative approach for microstructural analysis of coal char using HRTEM images, Fuel, 78, 1203–1212.

    Article  CAS  Google Scholar 

  25. Sharma, A., T. Kyotani, and A. Tomita (2000). Comparison of structural parameters of PF carbon from XRD and HRTEM techniques, Carbon 38, 1977–1984.

    Article  CAS  Google Scholar 

  26. Sharma, A., T. Kyotani, and A. Tomita (2000). Direct observation of layered structure of coals by a transmission electron microscope, Energy Fuels 14, 515–516.

    Article  CAS  Google Scholar 

  27. Sharma, A., T. Kyotani, and A. Tomita (2000). Direct observation of raw coals in lattice fringe mode using high-resolution transmission electron microscopy, Energy Fuels 14, 1219–1225.

    Article  CAS  Google Scholar 

  28. Sharma, A., T. Kyotani, and A. Tomita (2001). Quantitative evaluation of structural transformations in raw coals on heat-treatment using HRTEM technique, Fuel 80, 1467–1473.

    Article  CAS  Google Scholar 

  29. Sharma, A., H. Kadooka, T. Kyotani, and A. Tomita (2002). Effect of microstructural changes on gasification reactivity of coal chars during Low temperature gasification, Energy Fuels 16, 54–61.

    Article  CAS  Google Scholar 

  30. Aso, H., K. Matsuoka, A. Sharma, and A. Tomita (2004). Evaluation of size of graphene sheet in anthracite by a temperature-programmed oxidation method, Energy Fuels 18, 1309–1314.

    Article  CAS  Google Scholar 

  31. Aso, H., K. Matsuoka, A. Sharma, and A. Tomita (2004). Structural analysis of PVC and PFA carbons prepared at 500–1000 °C based on elemental composition, XRD, and HRTEM, Carbon 42, 2963–2973.

    Article  CAS  Google Scholar 

  32. Oberlin, A. (1989). In: P.A. Thrower (ed.), Chemistry and Physics of Carbon. Marcel Dekker, New York, Vol. 22, p. 1.

    Google Scholar 

  33. Oberlin, A., S. Bonnamy, and P.G. Rouxhet (1999). In: P.A. Thrower and L.R Radovic (eds.), Chemistry and Physics of Carbon. Marcel Dekker, New York, Vol. 26, p. 1.

    Google Scholar 

  34. Sharma, A., H. Groenzin, O.C. Mullins, and A. Tomita (2002). Probing order in asphaltenes and aromatic ring systems by HRTEM, Energy Fuels 16(2), 490.

    Article  CAS  Google Scholar 

  35. Zajac, G.W., N.K. Sethi, and J.T. Joseph (1994). Molecular imaging of petroleum asphaltenes by scanning tunneling microscopy, Scan. Micros. 8, 463.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Sharma, A., Mullins, O.C. (2007). Insights into Molecular and Aggregate Structures of Asphaltenes Using HRTEM. In: Mullins, O.C., Sheu, E.Y., Hammami, A., Marshall, A.G. (eds) Asphaltenes, Heavy Oils, and Petroleomics. Springer, New York, NY. https://doi.org/10.1007/0-387-68903-6_8

Download citation

Publish with us

Policies and ethics