Skip to main content

Artificial Neural Networks

  • Chapter
Computational Intelligence

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albus J S, (1975a), “A new approach to manipulator control: cerebellar model articulation control (CMAC)”, Trans. ASME, J. of Dynamics Syst., Meas. and Contr., 97, 220–227.

    MATH  Google Scholar 

  • Albus J S, (1975b), “Data storage in the cerebellar model articulation controller (CMAC)”, Trans. ASME, J. of Dynamics Syst., Meas. and Contr., 97, 228–233.

    MATH  Google Scholar 

  • Albus J S, (1979a), “A model of the brain for robot control”, Byte, 54–95.

    Google Scholar 

  • Albus J S, (1979b), “Mechanisms of planning and problem solving in the brain”, Math. Biosci., 45, 247–293.

    Article  Google Scholar 

  • An P E, Brown M, Harris C J, Lawrence A J and Moore C J, (1994), “Associative memory neural networks: adaptive modelling theory, software implementations and graphical user”, Engng. Appli. Artif. Intell., 7 (1), 1–21.

    Article  Google Scholar 

  • Bohte S M, La Poutre H and Kok J N, (2002a), “Unsupervised clustering with spiking neurons by sparse temporal coding and multilayer RBF networks”, IEEE Trans. on Neural Networks, 13 (2), 415–425.

    Article  Google Scholar 

  • Bohte S M, La Poutre H and Kok J N, (2002b), “Error-back propagation in temporally encoded networks of spiking neurons”, Neuro Computing, 17–37.

    Google Scholar 

  • Broomhead D S and Lowe D, (1988), “Multivariable functional interpolation and adaptive networks”, Complex Systems, 2, 321–355.

    MATH  MathSciNet  Google Scholar 

  • Carpenter G A and Grossberg S, (1987), “ART2: Self-organisation of stable category recognition codes for analog input patterns”, Appl. Optics,26 (23), 4919–4930.

    Article  Google Scholar 

  • Carpenter G A and Grossberg S, (1988), “The ART of adaptive pattern recognition by a self-organising neural network”, Computer, 77–88.

    Google Scholar 

  • Cichocki A and Unbahauen R, (1993), Neural Networks for Optimisation and Signal Processing, Chichester: Wiley.

    Google Scholar 

  • Elman J L, (1990), “Finding structure in time”, Cognitive Science, 14, 179–211.

    Article  Google Scholar 

  • Gerstner W and Kistler W M, (2002), Spiking Neuron Models: Single Neurons, Populations and Plasticity, Cambridge University Press, UK.

    Google Scholar 

  • Goldberg D, (1989), Genetic Algorithms in Search, Optimisation and Machine Learning, Reading, MA: Addison-Wesley.

    Google Scholar 

  • Hassoun M H, (1995), Fundamentals of Artificial Neural Networks, MIT Press, Cambridge, MA.

    MATH  Google Scholar 

  • Haykin S, (1999), Neural Networks: A Comprehensive Foundation, 2nd Edition, Upper Saddle River, NJ: Prentice Hall.

    MATH  Google Scholar 

  • Hecht-Nielsen R, (1990), Neurocomputing, Reading, MA: Addison-Wesley.

    Google Scholar 

  • Holland J H, (1975), Adaptation in Natural and Artificial Systems, Ann Arbor, MI: University of Michigan Press.

    Google Scholar 

  • Hopfield J J, (1982), “Neural networks and physical systems with emergent collective computational abilities”, Proc. National Academy of Sciences, 79, 2554–2558.

    Article  MathSciNet  Google Scholar 

  • Iannella N and Back A D, (2001), Spiking neural network architecture for nonlinear function approximation, Neural Networks, Special Issue, 14(6), 922–931.

    Google Scholar 

  • Jordan M I, (1986), “Attractor dynamics and parallelism in a connectionist sequential machines”, Proc. 8th Annual Conf. of the Cognitive Science Society, 531–546.

    Google Scholar 

  • Karaboga D, (1994), Design of Fuzzy Logic Controllers Using Genetic Algorithms, PhD thesis, University of Wales, Cardiff, UK.

    Google Scholar 

  • Kohonen T, (1989), Self-Organising and Associative Memory (3rd ed.), Berlin: Springer-Verlag.

    Google Scholar 

  • Lannella N and Back A D, (2001), Spiking neural network architecture for nonlinear function approximation, Neural Networks, Special Issue, 14(16), 922-931

    Google Scholar 

  • Maass W, (1997), “Networks of spiking neurons: The third generation of neural network models”, Neural Networks, 10, 1659–1671.

    Article  Google Scholar 

  • Maass W and Bishop C M, (1998), Pulsed Neural Networks, Cambridge: MIT Press.

    MATH  Google Scholar 

  • Moody J and Darken C J, (1989), “Fast learning in networks of locally-tuned processing units”, Neural Computation, 1 (2), 281–294.

    Google Scholar 

  • Natschläger T and Ruf B, (1998), “Spatial and temporal pattern analysis via spiking neurons”, Network: Computation in Neural systems, 9 (3), 319–332.

    Article  MATH  Google Scholar 

  • Pham D T and Chan A J, (1998), “Control chart pattern recognition using a new type of self-organising neural network”, Proc. of the Institution of Mechanical Engineers, 212 (Part I), 115–127.

    Google Scholar 

  • Pham D T and Chan A J, (2001), “Unsupervised adaptive resonance theory neural networks for control chart pattern recognition”, Proc. of the Institution of Mechanical Engineers, 215 (Part B), 59–67.

    Google Scholar 

  • Pham D T and Karaboga D, (1993), “Dynamic system identification using recurrent neural networks and genetic algorithms”, Proc. 9th Int. Conf. on Mathematical and Computer Modelling, San Francisco.

    Google Scholar 

  • Pham D T and Liu X, (1992), “Dynamic system modelling using partially recurrent neural networks”, Journal of Systems Engineering, 2 (2), 90–97.

    Google Scholar 

  • Pham D T and Liu X, (1994), “Modelling and prediction using GMDH networks of Adalines with nonlinear preprocessors”, Int. J. Systems Science, 25 (11), 1743–1759.

    MATH  Google Scholar 

  • Pham D T and Oh S J, (1992), “A recurrent backpropagation neural network for dynamic system identification”, Journal of Systems Engineering, 2 (4), 213–223.

    Google Scholar 

  • Pham D T and Oztemel E, (1994), “Control chart pattern recognition using learning vector quatization networks”, Int. J. Production Research, 32 (3), 721–729.

    MATH  Google Scholar 

  • Rumelhart D and McClelland J, (1986), Parallel distributed processing: exploitations in the micro-structure of cognition, volumes 1 and 2, Cambridge: MIT Press.

    Google Scholar 

  • Widrow B and Hoff M E, (1960), “Adaptive switching circuits”, Proc. 1960 IRE WESCON Convention Record, Part 4, IRE, New York, 96–104.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Pham, D.T., Packianather, M.S., Afify, A.A. (2007). Artificial Neural Networks. In: Andina, D., Pham, D.T. (eds) Computational Intelligence. Springer, Boston, MA. https://doi.org/10.1007/0-387-37452-3_3

Download citation

Publish with us

Policies and ethics