Skip to main content

MHC Molecules of the Preimplantation Embryo and Trophoblast

  • Chapter
Immunology of Pregnancy

Part of the book series: Medical Intelligence Unit ((MIUN))

  • 1653 Accesses

Abstract

The mechanisms of protection of the allogeneic fetus from the maternal immune response during pregnancy remain mysterious more than fifty years after the paradox of maternal tolerance was first raised by Peter Medawar. Preimplantation embryos express paternal antigens early in development. After implantation, placental tissue is derived from both maternal tissue and paternal-antigen expressing fetal tissue that is in intimate association with and bathed in maternal blood. There appears to be a key role for an unusual subset of major histocompatibility complex (MHC) Class I proteins of both maternal and paternal origin in the mediation of tolerance at the maternal/fetal interface and in the control of preimplantation embryonic growth rate. This subset of MHC products is composed of two nonclassical MHC Class Ib proteins, HLA-E and HLA-G in combination with a classical MHC Class la protein, HLA-C. This chapter reviews the history of the discovery of the major histocompatibilty complex Class I genes and the elucidation of the biological role of the proteins encoded by these genes in the immune response and in reproduction. MHC genes have also been implicated in reproductive choice and nurturing behaviors. We hypothesize that the vertebrate immune system derived from ancestral recognition systems driven by reproductive requirements, and was later coopted for immune recognition under additional evolutionary pressures. The complex interactions of MHC Class I proteins with components of both the innate and the adaptive immune systems in the context of the preimplantation embryo and the trophoblast of early pregnancy are described in detail, as are the difficulties inherent in studying these systems. Finally, potential future directions of research and the need for new model systems to study both preimplantation embryos and the maternal/fetal placental interface are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schluter SF, Bernstein RM, Bernstein H et al. ‚Big Bang ‘emergence of the combinatorial immune system. Dev Comp Immunol 1999;23(2):107–111.

    PubMed  CAS  Google Scholar 

  2. Gorer PA. The detection of antigenic differences in mouse erythrocytes by the employment of immune sera. Br J Exp Pathol 1936;17:42–50.

    CAS  Google Scholar 

  3. Snell GD. Methods for the study of histocompatibility genes. J Genet 1948;49:87–108.

    Google Scholar 

  4. Dausset J. Iso-leuko-antibodies. Acta Haematol 1958;20(1–4):156–166.

    PubMed  CAS  Google Scholar 

  5. Doherty PC, Zinkernagel RM. A biological role for the major histocompatibility antigens. Lancet 1975;1(7922):1406–1409.

    PubMed  CAS  Google Scholar 

  6. Bjorkman PJ, Saper MA, Samraoui B et al. Structure of the human class I histocompatibility antigen, HLA-A2. Nature 1987;329(6139):506–512.

    PubMed  CAS  Google Scholar 

  7. Gorga JC, Brown JH, Jardetzky T et al. Crystallization of HLA-DR antigens. Res Immunol 1991;142(5–6):401–407.

    PubMed  CAS  Google Scholar 

  8. van Rood JJ, van Leeuwen. A. Leucocyte grouping. A method and its application. J Clin Invest 1963;42(9):1382–1390.

    Google Scholar 

  9. Thorsby E, Sandberg L, Lindholm A et al. The HL-A system: Evidence of a third sub-locus. Scand J Haematol 1970;7(3):195–200.

    PubMed  CAS  Google Scholar 

  10. Kumanovics A, Takada T, Lindahl KF. Genomic organization of the mammalian MHC. Annu Rev Immunol 2003; 21:629–657.

    PubMed  CAS  Google Scholar 

  11. Penn DJ, Potts WK. The evolution of mating preference and major histocompatibility complex genes. The American Naturalist 1999;153(2):145–164.

    Google Scholar 

  12. von Boehmer H, Aifantis I, Gounari F et al. Thymic selection revisited: How essential is it? Immunol Rev 2003;191:62–78.

    Google Scholar 

  13. Medawar PB. Some immunological and endocrinological problems raised by evolution of viviparity in vertebrates. Symp Soc Exp Biol 1953;7:320–338.

    Google Scholar 

  14. Khalturin K, Becker M, Rinkevich B et al. Urochordates and the origin of natural killer cells: Identification of a CD94/NKR-P1-related receptor in blood cells of Botryllus. Proc Natl Acad Sci USA 2003;100(2):622–627.

    PubMed  CAS  Google Scholar 

  15. Stoner DS, Weissman IL. Somatic and germ cell parasitism in a colonial ascidian: Possible role for a highly polymorphic allorecognition system. Proc Natl Acad Sci USA 1996;93(26):15254–15259.

    PubMed  CAS  Google Scholar 

  16. Castro LF, Furlong RF, Holland PW. An antecedent of the MHC-linked genomic region in amphioxus. Immunogenetics 2004;55(11):782–784.

    PubMed  CAS  Google Scholar 

  17. Abi-Rached L, Gilles A, Shiina T et al. Evidence of en bloc duplication in vertebrate genomes. Nat Genet 2002;31(1):100–105.

    PubMed  CAS  Google Scholar 

  18. Amadou C. Evolution of the Mhc class I region: The framework hypothesis. Immunogenetics 1999;49(4):362–367.

    PubMed  CAS  Google Scholar 

  19. Singh PB, Brown RE, Roser B. MHC antigens in urine as olfactory recognition cues. Nature 1987;327(6118):161–164.

    PubMed  CAS  Google Scholar 

  20. Wedekind C, Seebeck T, Bettens F et al. MHC-dependent mate preferences in humans. Proc R Soc Lond B Biol Sci 1995;260(1359):245–249.

    CAS  Google Scholar 

  21. Manning CJ, Wakeland EK, Potts WK. Communal nesting patterns in mice implicate MHC genes in kin recognition. Nature 1992;360(6404):581–583.

    PubMed  CAS  Google Scholar 

  22. Yamazaki K, Beauchamp GK, Curran M et al. Parent-progeny recognition as a function of MHC odortype identity. Proc Natl Acad Sci USA 2000;97(19):10500–10502.

    PubMed  CAS  Google Scholar 

  23. Penn D, Potts W. MHC-disassortative mating preferences reversed by cross-fostering. Proc R Soc Lond B Biol Sci 1998;265(1403):1299–1306.

    CAS  Google Scholar 

  24. Amadou C, Younger RM, Sims S et al. Coduplication of olfactory receptor and MHC class I genes in the mouse major histocompatibility complex. Hum Mol Genet 2003;12(22):3025–3040.

    PubMed  CAS  Google Scholar 

  25. Schaefer ML, Yamazaki K, Osada K et al. Olfactory fingerprints for major histocompatibility complex-determined body odors II: Relationship among odor maps, genetics, odor composition, and behavior. J Neurosci 2002;22(21):9513–9521.

    PubMed  CAS  Google Scholar 

  26. Dulac C, Torello AT. Molecular detection of pheromone signals in mammals: From genes to behaviour. Nat Rev Neurosci 2003;4(7):551–562.

    PubMed  CAS  Google Scholar 

  27. Bard J, Yamazaki K, Curran M et al. Effect of B2m gene disruption on MHC-determined odortypes. Immunogenetics 2000;51(7):514–518.

    PubMed  CAS  Google Scholar 

  28. Loconto J, Papes F, Chang E et al. Functional expression of murine V2R pheromone receptors involves selective association with the M10 and Ml families of MHC class Ib molecules. Cell 2003;112(5):607–618.

    PubMed  CAS  Google Scholar 

  29. Stowers L, Holy TE, Meister M et al. Loss of sex discrimination and male-male aggression in mice deficient for TRP2. Science 2002;295(5559):1493–1500.

    PubMed  CAS  Google Scholar 

  30. Leypold BG, Yu CR, Leinders-Zufall T et al. Altered sexual and social behaviors in trp2 mutant mice. Proc Natl Acad Sci USA 2002;99(9):6376–6381.

    PubMed  CAS  Google Scholar 

  31. Liman ER, Innan H. Relaxed selective pressure on an essential component of pheromone transduction in primate evolution. Proc Natl Acad Sci USA 2003;100(6):3328–3332.

    PubMed  CAS  Google Scholar 

  32. Huh GS, Boulanger LM, Du H et al. Functional requirement for class I MHC in CNS development and plasticity. Science 2000;290(5499):2155–2159.

    PubMed  CAS  Google Scholar 

  33. Hoekstra HE, Hoekstra JM, Berrigan D et al. Strength and tempo of directional selection in the wild. Proc Natl Acad Sci USA 2001;98(16):9157–9160.

    PubMed  CAS  Google Scholar 

  34. Moffett-King A. Natural killer cells and pregnancy. Nat Rev Immunol 2002;2(9):656–663.

    PubMed  CAS  Google Scholar 

  35. Capmany G, Taylor A, Braude P et al. The timing of pronuclear formation, DNA synthesis and cleavage in the human 1-cell embryo. Mol Hum Reprod 1996;2(5):299–306.

    PubMed  CAS  Google Scholar 

  36. Braude P, Bolton V, Moore S. Human gene expression first occurs between the four-and eight-cell stages of preimplantation development. Nature 1988;332(6163):459–461.

    PubMed  CAS  Google Scholar 

  37. Exley GE, Warner CM. Zygotic genomic activation. In: Knobil E, Neil JD, eds. Encyclopedia of Reproduction. San Diego: Academic Press, 1999;4:1041–1046.

    Google Scholar 

  38. Schultz RM. Regulation of zygotic gene activation in the mouse. Bioessays 1993;15(8):531–538.

    PubMed  CAS  Google Scholar 

  39. Braude P, Pickering S, Flinter F et al. Preimplantation Genetic Diagnosis. Nat Rev Genet 2002;3(12):941–953.

    PubMed  CAS  Google Scholar 

  40. Sermon K, Van Steirteghem A, Liebaers I. Preimplantation genetic diagnosis. Lancet 2004;363(9421):1633–1641.

    PubMed  Google Scholar 

  41. Muggleton-Harris AL, Johnson MH. The nature and distribution of serologically detectable alloantigens on the preimplantation mouse embryo. J Embryol Exp Morphol 1976;35(1):59–72.

    PubMed  CAS  Google Scholar 

  42. Billington WD, Bell SC. Fetal histocompatibility antigens and maternal immune responses. Ciba Found Symp 1983;96:69–88.

    PubMed  CAS  Google Scholar 

  43. Arcellana-Panlilio MY, Schultz GA. Temporal and spatial expression of major histocompatibility complex class I H-2K in the early mouse embryo. Biol Reprod 1994;51(2):169–183.

    PubMed  CAS  Google Scholar 

  44. Sprinks MT, Sellens MH, Dealtry GB et al. Preimplantation mouse embryos express Mhc class I genes before the first cleavage division. Immunogenetics 1993;38(1):35–40.

    PubMed  CAS  Google Scholar 

  45. Warner CM, Gollnick SO. Expression of H-2K major histocompatibility antigens on preimplantation mouse embryos. Biol Reprod 1993;48(5):1082–1087.

    PubMed  CAS  Google Scholar 

  46. Warner CM, Spannaus DJ. Demonstration of H-2 antigens on preimplantation mouse embryos using conventional antisera and monoclonal antibody. J Exp Zool 1984;230(1):37–52.

    PubMed  CAS  Google Scholar 

  47. Goldbard SB, Gollnick SO, Warner CM. Synthesis of H-2 antigens by preimplantation mouse embryos. Biol Reprod 1985;33(1):30–36.

    PubMed  CAS  Google Scholar 

  48. Ke X, Warner CM. Regulation of Ped gene expression by TAP protein. J Reprod Immunol 2000;46(1):1–15.

    PubMed  CAS  Google Scholar 

  49. McElhinny AS, Kadow N, Warner CM. The expression pattern of the Qa-2 antigen in mouse preimplantation embryos and its correlation with the Ped gene phenotype. Mol Hum Reprod 1998;4(10):966–971.

    PubMed  CAS  Google Scholar 

  50. Ewoldsen MA, Ostlie NS, Warner CM. Killing of mouse blastocyst stage embryos by cytotoxic T lymphocytes directed to major histocompatibility complex antigens. J Immunol 1987;138(9):2764–2770.

    PubMed  CAS  Google Scholar 

  51. Desoye G, Dohr GA, Motter W et al. Lack of HLA class I and class II antigens on human preimplantation embryos. Immunol 1988;140(12):4157–4159.

    CAS  Google Scholar 

  52. Roberts JM, Taylor CT, Melling GC et al. Expression of the CD46 antigen, and absence of class I MHC antigen, on the human oocyte and preimplantation blastocyst. Immunology 1992;75(1):202–205.

    PubMed  CAS  Google Scholar 

  53. Cao W, Brenner CA, Alikani M et al. Search for a human homologue of the mouse Ped gene. Mol Hum Reprod 1999;5(6):541–547.

    PubMed  CAS  Google Scholar 

  54. Jurisicova A, Casper RF, MacLusky NJ et al. HLA-G expression during preimplantation human embryo development. Proc Natl Acad Sci USA 1996;93(1):161–165.

    PubMed  CAS  Google Scholar 

  55. Jurisicova A, Antenos M, Kapasi K et al. Variability in the expression of trophectodermal markers beta-human chorionic gonadotrophin, human leukocyte antigen-G and pregnancy specific beta-1 glycoprotein by the human blastocyst. Hum Reprod 1999;14(7):1852–1858.

    PubMed  CAS  Google Scholar 

  56. Hiby SE, King A, Sharkey A et al. Molecular studies of trophoblast HLA-G: polymorphism, isoforms, imprinting and expression in preimplantation embryo. Tissue Antigens 1999;53(1):1–13.

    PubMed  CAS  Google Scholar 

  57. Menicucci A, Noci I, Fuzzi B et al. Nonclassic sHLA class I in human oocyte culture medium. Hum Immunol 1999;60(11):1054–1057.

    PubMed  CAS  Google Scholar 

  58. Fuzzi B, Rizzo R, Criscuoli L et al. HLA-G expression in early embryos is a fundamental prerequisite for the obtainment of pregnancy. Eur J Immunol 2002;32(2):311–315.

    PubMed  CAS  Google Scholar 

  59. Sher G, Keskintepe L, Nouriani M et al. Expression of sHLA-G in supernatants of individually cultured 46-h embryos: A potentially valuable indicator of ‚embryo competency ‘and IVF outcome. Reproductive Biomedicine Online 2004;9(1):9(1):74–8.

    PubMed  Google Scholar 

  60. Gardner DK, Sakkas D. Assessment of embryo viability: The ability to select a single embryo for transfer—a review. Placenta 2 2003;24(Suppl B):S5–12.

    Google Scholar 

  61. Brownell MS, Warner CM. Ped gene expression by embryos cultured in vitro. Biol Reprod 1988;39(4):806–811.

    PubMed  CAS  Google Scholar 

  62. Tian Z, Xu Y, Warner CM. Removal of Qa-2 antigen alters the Ped gene phenotype of preimplantation mouse embryos. Biol Reprod 1992;47(2):271–276.

    PubMed  CAS  Google Scholar 

  63. Xu Y, Jin P, Warner CM. Modulation of preimplantation embryonic development by antisense oligonucleotides to major histocompatibility complex genes. Biol Reprod 1993;48(5):1042–1046.

    PubMed  CAS  Google Scholar 

  64. Wu L, Feng H, Warner CM. Identification of two major histocompatibility complex class Ib genes, Q7 and Q9, as the Ped gene in the mouse. Biol Reprod 1999;60(5):1114–1119.

    PubMed  CAS  Google Scholar 

  65. Exley GE, Warner CM. Selection in favor of the Ped fast haplotype occurs between mid-gestation and birth. Immunogenetics 1999;49(7–8):653–659.

    PubMed  CAS  Google Scholar 

  66. Warner CM, Brownell MS, Rothschild MF. Analysis of litter size and weight in mice differing in Ped gene phenotype and the Q region of the H-2 complex. J Reprod Immunol 1991;19(3):303–313.

    PubMed  CAS  Google Scholar 

  67. Warner CM, Brenner CA. Genetic regulation of preimplantation embryo survival. Curr Top Dev Biol 2001;52:151–192.

    PubMed  CAS  Google Scholar 

  68. Waterston RH, Lindblad-Toh K, Birney E et al. Initial sequencing and comparative analysis of the mouse genome. Nature 2002;420(6915):520–562.

    PubMed  CAS  Google Scholar 

  69. Koonin EV, Mushegian AR, Bork P. Nonorthologous gene displacement. Trends Genet 1996;12(9):334–336.

    PubMed  CAS  Google Scholar 

  70. Allcock RJ, Martin AM, Price P. The mouse as a model for the effects of MHC genes on human disease. Immunol Today 2000;21(7):328–332.

    PubMed  CAS  Google Scholar 

  71. Comiskey M, Goldstein CY, De Fazio SR et al. Evidence that HLA-G is the functional homolog of mouse Qa-2, the Ped gene product. Hum Immunol 2003;64(11):999–1004.

    PubMed  CAS  Google Scholar 

  72. Horejsi V, Drbal K, Cebecauer M et al. GPI-microdomains: A role in signalling via immunoreceptors. Immunol Today 1999;20(8):356–361.

    PubMed  CAS  Google Scholar 

  73. Singer BB, Scheffrahn I, Heymann R et al. Carcinoembryonic antigen-related cell adhesion molecule 1 expression and signaling in human, mouse, and rat leukocytes: Evidence for replacement of the short cytoplasmic domain isoform by glycosylphosphatidylinositol-linked proteins in human leukocytes. J Immunol 2002;168(10):5139–5146.

    PubMed  CAS  Google Scholar 

  74. Norwitz E, Schust D, Fisher S. Implantation and the survival of early pregnancy. New England Journal of Medicine 2001;345(19):1400–1408.

    PubMed  CAS  Google Scholar 

  75. Georgiades P, Ferguson-Smith A, Burton G. Comparative developmental anatomy of the murine and human definitive placentae. Placenta 2002;23(1):3–19.

    PubMed  CAS  Google Scholar 

  76. Schust D, Tortorella D, Ploegh H. Viral immunoevasive strategies and trophoblast class I major histocompatibility complex antigens, J Reprod Immunol 1999;43(2):243–251.

    PubMed  CAS  Google Scholar 

  77. Kam E, Gardner L, Loke Y et al. The role of trophoblast in the physiological change in decidual spiral arteries. Hum Reprod 1999;14(8):2131–2138.

    PubMed  CAS  Google Scholar 

  78. Damsky C, Fisher S. Trophoblast pseudo-vasculogenesis: Faking it with endothelial adhesion receptors. Curr Opin Cell Biol 1998;10(5):660–666.

    PubMed  CAS  Google Scholar 

  79. Blaschitz A, Hutter H, Dohr G. HLA Class I protein expression in the human placenta. Early Pregnancy 2001;5(1):67–69.

    PubMed  CAS  Google Scholar 

  80. Mattson R. The non expression of MHC class II in trophoblast cells. Am J Reprod Immunol 1998;40:385–394.

    Google Scholar 

  81. Murphy S, Tomasi T. Absence of MHC class II antigen expression in trophoblast cells results from a lack of class II transactivator (CIITA) gene expression. Mol Reprod Dev 1998;51(1):1–12.

    PubMed  CAS  Google Scholar 

  82. King A, Allan D, Bowen M et al. HLA-E is expressed on trophoblast and interacts with CD94/NKG2 receptors on decidual NK cells. Eur J Immunol 2000;30(6):1623–1631.

    PubMed  CAS  Google Scholar 

  83. King A, Burrows T, Hiby S et al. Surface expression of HLA-C antigen by human extravillous trophoblast. Placenta 2000;21(4):376–387.

    PubMed  CAS  Google Scholar 

  84. Kovats S, Main E, Librach C et al. A class I antigen, HLA-G, expressed in human trophoblasts. Science 1990;248(4952):220–223.

    PubMed  CAS  Google Scholar 

  85. Ellis S, Strachan T, Palmer M et al. Complete nucleotide sequence of a unique HLA class I C locus product expressed on the human choriocarcinoma cell line BeWo. J Immunol 1989;142:3281–3285.

    PubMed  CAS  Google Scholar 

  86. Sernee M, Ploegh H, Schust D. Why certain antibodies cross-react with HLA-A and HLA-G: Epitope mapping of two common MHC class I reagents. Mol Immunol 1998;35(3):177–188.

    PubMed  CAS  Google Scholar 

  87. Lim K, Zhou Y, Janatpour M et al. Human cytotrophoblast differentiation/invasion is abnormal in preeclampsia. Am J Pathol 1997;151(6):1809–1818.

    PubMed  CAS  Google Scholar 

  88. Goldman-Wohl D, Ariel I, Greenfield C et al. Lack of human leukocyte antigen-G expression in extravillous trophoblasts is associated with preeclampsia. Mol Hum Reprod 2000;6(1):88–95.

    PubMed  CAS  Google Scholar 

  89. Lefrancois L, Fuller B, Huleatt J et al. On the front lines: Intraepithelial lymphocytes as primary effectors of intestinal immunity. Springer Semin Immunopathol 1997;18:463–475.

    PubMed  CAS  Google Scholar 

  90. Bulmer JN, Johnson PM. Immunohistological characterization of the decidual leucocytic infiltrate related to endometrial gland epithelium in early human pregnancy. Immunology 1985;55(1):35–44.

    PubMed  CAS  Google Scholar 

  91. Gould D, Ploegh H, Schust D. Murine female reproductive tract intraepithelial lymphocytes dis play selection characteristics distinct from both peripheral and other mucosal T cells. J Reprod Immunol 2001;52(1–2):85–99.

    PubMed  CAS  Google Scholar 

  92. Clark D. T cells in pregnancy: Illusion and reality. Am J Reprod Immunol 1999;41(4):233–238.

    PubMed  CAS  Google Scholar 

  93. Loke YW, King A. Decidual natural-killer-cell interaction with trophoblast: Cytolysis or cytokine production? Biochem Soc Trans 2000;28(2):196–198.

    PubMed  CAS  Google Scholar 

  94. Johnson P, Christmas P, Vince G. Immunological aspects of implantation and implantation failure. Hum Reprod 1999;14(suppl 2):26–36.

    PubMed  CAS  Google Scholar 

  95. Vince G, Johnson P. Leukocyte populations and cytokine regulation in human uteroplacental tissues. Biochem Soc Trans 2000;28:191–195.

    PubMed  CAS  Google Scholar 

  96. Ljunggren HG, Karre K. In search of the missing self: MHC molecule and NK cell recognition. Immunology Today 1990;11:237–244.

    PubMed  CAS  Google Scholar 

  97. Moretta L, Biassoni R, Bottino C et al. Human NK cells and their receptors. Microbes Infect 2002;4(15):1539–1544.

    PubMed  CAS  Google Scholar 

  98. Pazmany L, Mandelboim O, Vales-Gomez M et al. Protection from natural killer cell-mediated lysis by HLA-G expression on target cells. Science 1996;274(5288):792–795.

    PubMed  CAS  Google Scholar 

  99. Braud VM, Allan DS, O’Callaghan CA et al. HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C [see comments]. Nature 1998; 391(6669):795–799.

    PubMed  CAS  Google Scholar 

  100. Hofmeister V, Weiss EH. HLA-G modulates immune responses by diverse receptor interactions. Semin Cancer Biol 2003;13(5):317–323.

    PubMed  CAS  Google Scholar 

  101. Lemberg M, Bland F, Weihofen A et al. Intramembrane proteolysis of signal peptides: An essential step in the generation of HLA-E epitopes. J Immunol 2001;167(11):6441–6446.

    PubMed  CAS  Google Scholar 

  102. Stevens J, Joly E, Trowsdale J et al. Peptide binding characteristics of the nonclassical class Ib MHC molecule HLA-E assessed by recombinant random peptide approach. BMC Immunol 2001;2(1):5.

    PubMed  CAS  Google Scholar 

  103. Lee N, Goodlett DR, Ishitani A et al. HLA-E surface expression depends on binding of TAP-dependent peptides derived from certain HLA class I signal sequences. J Immunol 1998;160(10):4951–4960.

    PubMed  CAS  Google Scholar 

  104. Davis DM, Reyburn HT, Pazmany L et al. Impaired spontaneous endocytosis of HLA-G. Eur J Immunol 1997;27(10):2714–2719.

    PubMed  CAS  Google Scholar 

  105. Vales-Gomez M, Reyburn HT, Mandelboim M et al. Kinetics of interaction of HLA-C ligands with natural killer cell inhibitory receptors. Immunity 1998;9(3):337–344.

    PubMed  CAS  Google Scholar 

  106. Khakoo SI, Rajalingam R, Shum BP et al. Rapid evolution of NK cell receptor systems demonstrated by comparison of chimpanzees and humans. Immunity 2000;12(6):687–698.

    PubMed  CAS  Google Scholar 

  107. Godfrey D, Hammond K, Poulton L et al. NKT cells: Facts, functions, and fallacies. Immunol Today 2000;21:573–583.

    PubMed  CAS  Google Scholar 

  108. Ito K, Karasawa M, Kawano T et al. Involvement of decidual Valphal4 NKT cells in abortion. Proc Natl Acad Sci USA 2000;97(2):740–744.

    PubMed  CAS  Google Scholar 

  109. Dang Y, Heyborne KD. Cutting edge: Regulation of uterine NKT cells by a fetal class I molecule other than CD1. J Immunol 2001;166(6):3641–3644.

    PubMed  CAS  Google Scholar 

  110. Boyson J, Rybalov B, Koopman L et al. CD Id and invariant NKT cells at the human maternal-fetal interface. Proc Nad Acad Sci USA 2002;99(21):13741–13746.

    CAS  Google Scholar 

  111. Bulmer J, Sunderland C. Immunohistological characterization of lymphoid cell populations in the early human placental bed. Immunology 1984;52(2):349–357.

    PubMed  CAS  Google Scholar 

  112. Le Gal F, Riteau B, Sedlik C et al. HLA-G-mediated inhibition of antigen-specific cytotoxic T lymphocytes. Int Immunol 1999;11(8):1351–1356.

    PubMed  Google Scholar 

  113. Horuzsko A, Portik-Dobos V, Hansen KA et al. Induction of HLA-G-specific human CD8+ T cell lines by stimulation across a polymorphism of HLA-G. Trans Proc 1999;31:1860–1863.

    CAS  Google Scholar 

  114. Lee N, Malacko A, Ishitani A et al. The membrane-bound and soluble forms of HLA-G bind identical sets of endogenous peptides but differ with respect to TAP association. Immunity 1995;3:591–600.

    PubMed  CAS  Google Scholar 

  115. Ishitani A, Geraghty D. Alternative splicing of HLA-G transcripts yeilds proteins with plrimary structures resembling both class I and class II antigens. Proc Natl Acad Sci USA 1992;89:3947–3951.

    PubMed  CAS  Google Scholar 

  116. Kirszenbaum M, Moreau E, Gluckman E et al. An alternatively spliced form of HLA-G mRNA in human trophoblasts and evidence for the presence of HLA-G in adult lymphocytes. Proc Natl Acad Sci USA 1994;91:4209–4213.

    PubMed  CAS  Google Scholar 

  117. Kirzenbaum M, Moreau P, Teysseir M et al. Evidence for the presence of the alternatively spliced HLA-G mRNA forms in human mononuclear cells from peripheral blood and umbilical cord blood. Human Immunology 1995;43:237–241.

    Google Scholar 

  118. McMaster M, Zhou Y, Shorter K et al. HLA-G isoforms produced by placental cytotrophoblasts and found in amniotic fluid are due to unusual glycosylation. J Immunol 1998;160:5922–5928.

    PubMed  CAS  Google Scholar 

  119. Hunt J, Jadhav L, Chu W et al. Soluble HLA-G circulates in maternal blood during pregnancy. Am J Obstet Gynecol 2000;183(3):682–688.

    PubMed  CAS  Google Scholar 

  120. Kuipers J, Bialowons A, Dollmann P et al. The genetically-engineered secretory B27/Q10 chimeric molecule inhibits HLA-B27 restricted alloreactive T-lymphocytes. Clin Exp Rheumatol 2002;20(4):455–462.

    PubMed  CAS  Google Scholar 

  121. Turowski G, Kedzierska A. Soluble HLA class I antigens in serum of healthy individuals—population study. Med Sci Monk 2 2000;6(1):123–128.

    CAS  Google Scholar 

  122. Solier C, AguerreGirr M, Lenfant F et al. Secretion of pro-apoptotic intron 4-retaining soluble HLA-G1 by human villous trophoblast. Eur J immunol 2002;32(12):3576–3586.

    PubMed  CAS  Google Scholar 

  123. King A, Hiby S, Gardner L et al. Recognition of trophoblast HLA class I molecules by decidual NK cell receptors-a review. Placenta 2000;21(suppl A):S81–85.

    PubMed  Google Scholar 

  124. Kanai T, Fujii T, Unno N et al. Human leukocyte antigen-G-expressing cells differently modulate the release of cytokines from mononuclear cells present in the decidua versus peripheral blood. Am J Reprod Immunol 2001;45(2):94–99.

    PubMed  CAS  Google Scholar 

  125. Golos TG. Pregnancy initiation in the rhesus macaque: Towards functional manipulation of the maternal-fetal interface. Reprod Biol Endocrinol 2004;2(1):35.

    PubMed  Google Scholar 

  126. Zheng P, Patel B, McMenamin M et al. The primate embryo gene expression resource: A novel resource to facilitate rapid analysis of gene expression patterns in nonhuman primate oocytes and preimplantation stage embryos. Biol Reprod 2004;70(5):1411–1418.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Comiskey, M., Warner, C.M., Schust, D.J. (2006). MHC Molecules of the Preimplantation Embryo and Trophoblast. In: Mor, G. (eds) Immunology of Pregnancy. Medical Intelligence Unit. Springer, New York, NY. https://doi.org/10.1007/0-387-34944-8_13

Download citation

Publish with us

Policies and ethics