Skip to main content

MDM2 and MDMX Regulators of p53 Activity

  • Chapter
The p53 Tumor Suppressor Pathway and Cancer

Part of the book series: Protein Reviews ((PRON,volume 2))

  • 1255 Accesses

Abstract

MDM2 possesses three activities that, together, effectively inhibit the p53 tumor suppressor. First, it binds to p53 and sterically blocks p53 interaction with TATA box protein accessory factors thereby shutting down its transcriptional transactivation function. Second, MDM2 shuttles p53 from its site of action within the nucleus into the cytoplasm. Third, MDM2 is an E3 ligase that transfers ubiquitin onto lysine residues of p53. Ubiquitinated p53 is rapidly degraded by the 26S proteosome. Because the MDM2 oncoprotein mediates three progressive stages of inhibition, it is the principal regulator of p53 activity. TheMDM2gene is located on chromosome 12q14.3-q15 and is amplified in several types of neoplasms, most of which are of mesenchymal tissue origin. MDM2 binding to p53 can be inhibited by phosphorylation of either MDM2 or p53. The kinases responsible for this phosphorylation are activated by cell stressors in general (hypoxia, nitric oxide, hydrogen peroxide) and DNA damaging agents in particular (ionizing radiation, UV-light). MDM2 can be inhibited by RAS or MYC oncoproteins. RAS and MYC activate the tumor suppressor protein p19Arf which sequesters MDM2 into the nucleolus and, in doing so, allows p53 levels to rise. The MDM2gene is activated by p53, which means that, in effect, p53 inhibits itself through MDM2. The cell requires a fine balance of MDM2 and p53 to maintain cell growth and a rapid response to stressors. MDMX is a paralog of MDM2 that has retained the ability to inhibit p53 binding to TATA box protein accessory factors. MDMX does not possess other p53 inhibitory activities. There has been recent progress in the development of small molecules that block MDM2 from binding to p53. Although these molecules are in the early stages of development, it is hoped that they will contribute to the war on cancer. This chapter summarizes the key studies that have increased our understanding of the interplay between p53, MDM2, and MDMX.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barak, Y., Gottlieb, E., Juven-Gershon, T., and Oren, M. (1994). Regulation of mdm2 expression by p53: alternative promoters produce transcripts with nonidentical translation potential. Genes Dev 8:1739–1749.

    Article  PubMed  CAS  Google Scholar 

  • Barak, Y., Juven, T., Haffner, R., and Oren, M. (1993). mdm2 expression is induced by wild type p53 activity. EMBO J 12:461–468.

    PubMed  CAS  Google Scholar 

  • Barak, Y., and Oren, M. (1992). Enhanced binding of a 95 kDa protein to p53 in cells undergoing p53-mediated growth arrest. EMBO J 11:2115–2121.

    PubMed  CAS  Google Scholar 

  • Barlev, N. A., Liu, L., Chehab, N. H., Mansfield, K., Harris, K. G., Halazonetis, T. D., and Berger, S. L. (2001). Acetylation of p53 Activates Transcription through Recruitment of Coactivators/Histone Acetyltransferases. Mol Cell 8:1243–1254.

    Article  PubMed  CAS  Google Scholar 

  • Barton, G. J., and Sternberg, M. J. (1987). A strategy for the rapid multiple alignment of protein sequences. Confidence levels from tertiary structure comparisons. J Mol Biol 198:327–337.

    Article  PubMed  CAS  Google Scholar 

  • Bates, S., Phillips, A. C., Clark, P. A., Stott, F., Peters, G., Ludwig, R. L., and Vousden, K. H. (1998). p14ARF links the tumour suppressors RB and p53. Nature 395:124–125.

    Article  PubMed  CAS  Google Scholar 

  • Bean, L. J., and Stark, G. R. (2001). Phosphorylation of serines 15 and 37 is necessary for efficient accumulation of p53 following irradiation with UV. Oncogene 20:1076–1084.

    Article  PubMed  CAS  Google Scholar 

  • Bean, L. J., and Stark, G. R. (2002). Regulation of the accumulation and function of p53 by phosphorylation of two residues within the domain that binds to Mdm2. J Biol Chem 277:1864–1871.

    Article  PubMed  CAS  Google Scholar 

  • Botuyan, M. V., Momand, J., and Chen, Y. (1997). Solution conformation of an essential region of the p53 transactivation domain. Fold Des 2:331–342.

    Article  PubMed  CAS  Google Scholar 

  • Boyd, S. D., Tsai, K. Y., and Jacks, T. (2000). An intact HDM2 RING-finger domain is required for nuclear exclusion of p53. Nat Cell Biol 2:563–568.

    Article  PubMed  CAS  Google Scholar 

  • Buschmann, T., Fuchs, S. Y., Lee, C. G., Pan, Z. Q., and Ronai, Z. (2001). Erratum: SUMO-1 modification of Mdm2 prevents its self-ubiquitination and increases Mdm2 ability to ubiquitinate p53. Cell 107:549.

    Article  CAS  Google Scholar 

  • Buschmann, T., Fuchs, S. Y., Lee, C. G., Pan, Z. Q., and Ronai, Z. (2000). SUMO-1 modification of Mdm2 prevents its self-ubiquitination and increases Mdm2 ability to ubiquitinate p53. Cell 101:753–762.

    Article  PubMed  CAS  Google Scholar 

  • Cahilly-Snyder, L., Yang-Feng, T., Francke, U., and George, D. L. (1987). Molecular analysis and chromosomal mapping of amplified genes isolated from a transformed mouse 3T3 cell line. Somat Cell Mol Genet 13:235–244.

    Article  PubMed  CAS  Google Scholar 

  • Chehab, N. H., Malikzay, A., Stavridi, E. S., and Halazonetis, T. D. (1999). Phosphorylation of Ser-20 mediates stabilization of human p53 in response to DNA damage. Proc Natl Acad Sci USA 96:13777–13782.

    Article  PubMed  CAS  Google Scholar 

  • Chen, C.Y., Oliner, J. D., Zhan, Q., Fornace, A. J., Jr., Vogelstein, B., and Kastan, M. B. (1994). Interactions between p53 and MDM2 in a mammalian cell cycle checkpoint pathway. Proc Natl Acad Sci USA 91:2684–2688.

    Article  PubMed  CAS  Google Scholar 

  • Chen, J., Marechal, V., and Levine, A. J. (1993). Mapping of the p53 and mdm-2 interaction domains. Mol Cell Biol 13:4107–4114.

    PubMed  CAS  Google Scholar 

  • Chen, J., Wu, X., Lin, J., and Levine, A. J. (1996). mdm-2 inhibits the G1 arrest and apoptosis functions of the p53 tumor suppressor protein. Mol Cell Biol 16:2445–2452.

    PubMed  CAS  Google Scholar 

  • Chen, L., Agrawal, S., Zhou, W., Zhang, R., and Chen, J. (1998). Synergistic activation of p53 by inhibition of MDM2 expression and DNA damage. Proc Natl Acad Sci USA 95:195–200.

    Article  PubMed  CAS  Google Scholar 

  • Chene, P., Fuchs, J., Bohn, J., Garcia-Echeverria, C., Furet, P., and Fabbro, D. (2000). A small synthetic peptide, which inhibits the p53-hdm2 interaction, stimulates the p53 pathway in tumour cell lines. J Mol Biol 299:245–253.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, A. R., Purdie, C. A., Harrison, D. J., Morris, R. G., Bird, C. C., Hooper, M. L., and Wyllie, A. H. (1993). Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 362:849–852.

    Article  PubMed  CAS  Google Scholar 

  • de Stanchina, E., McCurrach, M. E., Zindy, F., Shieh, S. Y., Ferbeyre, G., Samuelson, A. V., Prives, C., Roussel, M. F., Sherr, C. J., and Lowe, S. W. (1998). E1A signaling to p53 involves the p19(ARF) tumor suppressor. Genes Dev 12:2434–42.

    PubMed  Google Scholar 

  • Domagala, W., Harezga, B., Szadowska, A., Markiewski, M., Weber, K., and Osborn, M. (1993). Nuclear p53 protein accumulates preferentially in medullary and high-grade ductal but rarely in lobular breast carcinomas. Am J Pathol 142:669–674.

    PubMed  CAS  Google Scholar 

  • Duncan, S. J., Gruschow, S., Williams, D. H., McNicholas, C., Purewal, R., Hajek, M., Gerlitz, M., Martin, S., Wrigley, S. K., and Moore, M. (2001). Isolation and structure elucidation of Chlorofusin, a novel p53-MDM2 antagonist from a Fusarium sp. J Am Chem Soc 123:554–560.

    Article  PubMed  CAS  Google Scholar 

  • Fakharzadeh, S. S., Trusko, S. P., and George, D. L. (1991). Tumorigenic potential associated with enhanced expression of a gene that is amplified in a mouse tumor cell line. EMBO J 10:1565–1569.

    PubMed  CAS  Google Scholar 

  • Freedman, D. A., and Levine, A. J. (1998). Nuclear export is required for degradation of endogenous p53 by MDM2 and human papillomavirus E6. Mol Cell Biol 18:7288–7293.

    PubMed  CAS  Google Scholar 

  • Gardie, B., Cayuela, J. M., Martini, S., and Sigaux, F. (1998). Genomic alterations of the p19ARF encoding exons in T-cell acute lymphoblastic leukemia. Blood 91:1016–1020.

    PubMed  CAS  Google Scholar 

  • Gazzeri, S., Della Valle, V., Chaussade, L., Brambilla, C., Larsen, C. J., and Brambilla, E. (1998). The human p19ARF protein encoded by the beta transcript of the p16INK4a gene is frequently lost in small cell lung cancer. Cancer Res 58:3926–3931.

    PubMed  CAS  Google Scholar 

  • Geyer, R. K., Yu, Z. K., and Maki, C. G. (2000). The MDM2 RING-finger domain is required to promote p53 nuclear export. Nat Cell Biol 2:569–573.

    Article  PubMed  CAS  Google Scholar 

  • Giaccia, A. J., and Kastan, M. B. (1998). The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev 12:2973–2983.

    PubMed  CAS  Google Scholar 

  • Gostissa, M., Hengstermann, A., Fogal, V., Sandy, P., Schwarz, S. E., Scheffner, M., and Del Sal, G. (1999). Activation of p53 by conjugation to the ubiquitin-like protein SUMO-1. EMBO J 18:6462–6471.

    Article  PubMed  CAS  Google Scholar 

  • Gotz, C., Kartarius, S., Scholtes, P., Nastainczyk, W., and Montenarh, M. (1999). Identification of a CK2 phosphorylation site in mdm2. Eur J Biochem 266:493–501.

    Article  PubMed  CAS  Google Scholar 

  • Gu, W., and Roeder, R. G. (1997). Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90:595–606.

    Article  PubMed  CAS  Google Scholar 

  • Haines, D. S., Landers, J. E., Engle, L. J., and George, D. L. (1994). Physical and functional interaction between wild-type p53 and mdm2 proteins. Mol Cell Biol 14:1171–1178.

    PubMed  CAS  Google Scholar 

  • Hartwell, L. H., and Weinert, T. A. (1989). Checkpoints: controls that ensure the order of cell cycle events. Science 246:629–634.

    Article  PubMed  CAS  Google Scholar 

  • Haupt, Y., Barak, Y., and Oren, M. (1996). Cell type-specific inhibition of p53-mediated apoptosis by mdm2. EMBO J 15:1596–1606.

    PubMed  CAS  Google Scholar 

  • Haupt, Y., Maya, R., Kazaz, A., and Oren, M. (1997). Mdm2 promotes the rapid degradation of p53. Nature 387:296–299.

    Article  PubMed  CAS  Google Scholar 

  • Hinds, P. W., Finlay, C. A., Quartin, R. S., Baker, S. J., Fearon, E. R., Vogelstein, B., and Levine, A. J. (1990). Mutant p53 DNA clones from human colon carcinomas cooperate with ras in transforming primary rat cells: a comparison of the “hot spot” mutant phenotypes. Cell Growth Differ 1:571–580.

    PubMed  CAS  Google Scholar 

  • Hirao, A., Kong, Y. Y., Matsuoka, S., Wakeham, A., Ruland, J., Yoshida, H., Liu, D., Elledge, S. J., and Mak, T. W. (2000). DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 287:1824–1827.

    Article  PubMed  CAS  Google Scholar 

  • Honda, R., Tanaka, H., and Yasuda, H. (1997). Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett 420:25–27.

    Article  PubMed  CAS  Google Scholar 

  • Honda, R., and Yasuda, H. (1999). Association of p19(ARF) with Mdm2 inhibits ubiquitin ligase activity of Mdm2 for tumor suppressor p53. EMBO J 18:22–27.

    Article  PubMed  CAS  Google Scholar 

  • Ito, A., Lai, C. H., Zhao, X., Saito, S., Hamilton, M. H., Appella, E., and Yao, T. P. (2001). p300/CBPmediated p53 acetylation is commonly induced by p53-activating agents and inhibited by MDM2. EMBO J 20:1331–1340.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, M. W., Lindstrom, M. S., and Berberich, S. J. (2001). MdmX binding to ARF affects Mdm2 protein stability and p53 transactivation. J Biol Chem 276:25336–25341.

    Article  PubMed  CAS  Google Scholar 

  • Jones, S. N., Roe, A. E., Donehower, L. A., and Bradley, A. (1995). Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 378:206–208.

    Article  PubMed  CAS  Google Scholar 

  • Juven, T., Barak, Y., Zauberman, A., George, D. L., and Oren, M. (1993). Wild type p53 can mediate sequence-specific transactivation of an internal promoter within the mdm2 gene. Oncogene 8:3411–3416.

    PubMed  CAS  Google Scholar 

  • Kamijo, T., Weber, J. D., Zambetti, G., Zindy, F., Roussel, M. F., and Sherr, C. J. (1998). Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Proc Natl Acad Sci USA 95:8292–8297.

    Article  PubMed  CAS  Google Scholar 

  • Kastan, M. B., Onyekwere, O., Sidransky, D., Vogelstein, B., and Craig, R.W. (1991). Participation of p53 protein in the cellular response to DNA damage. Cancer Res 51:6304–6311.

    PubMed  CAS  Google Scholar 

  • Khosravi, R., Maya, R., Gottlieb, T., Oren, M., Shiloh, Y., and Shkedy, D. (1999). Rapid ATM-dependent phosphorylation of MDM2 precedes p53 accumulation in response to DNA damage. Proc Natl Acad Sci USA 96:14973–14977.

    Article  PubMed  CAS  Google Scholar 

  • Kobet, E., Zeng, X., Zhu, Y., Keller, D., and Lu, H. (2000). MDM2 inhibits p300-mediated p53 acetylation and activation by forming a ternary complex with the two proteins. Proc Natl Acad Sci USA 97:12547–12552.

    Article  PubMed  CAS  Google Scholar 

  • Kubbutat, M. H., Jones, S. N., and Vousden, K. H. (1997). Regulation of p53 stability by Mdm2. Nature 387:299–303.

    Article  PubMed  CAS  Google Scholar 

  • Kubbutat, M. H., Ludwig, R. L., Levine, A. J., and Vousden, K. H. (1999). Analysis of the degradation function of Mdm2. Cell Growth Differ 10:87–92.

    PubMed  CAS  Google Scholar 

  • Kussie, P. H., Gorina, S., Marechal, V., Elenbaas, B., Moreau, J., Levine, A. J., and Pavletich, N. P. (1996). Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274:948–953.

    Article  PubMed  CAS  Google Scholar 

  • Lai, Z., Ferry, K. V., Diamond, M. A., Wee, K. E., Kim, Y. B., Ma, J., Yang, T., Benfield, P. A., Copeland, R. A., and Auger, K. R. (2001). Human mdm2 mediates multiple mono-ubiquitination of p53 by a mechanism requiring enzyme isomerization. J Biol Chem 276:31357–31367.

    Article  PubMed  CAS  Google Scholar 

  • Lai, Z., Freedman, D. A., Levine, A. J., and McLendon, G. L. (1998). Metal and RNA binding properties of the hdm2 RING finger domain. Biochemistry 37:7005–7015.

    Article  PubMed  CAS  Google Scholar 

  • Landers, J. E., Cassel, S. L., and George, D. L. (1997). Translational enhancement of mdm2 oncogene expression in human tumor cells containing a stabilized wild-type p53 protein. Cancer Res 57:3562–3568.

    PubMed  CAS  Google Scholar 

  • Lin, J., Chen, J., Elenbaas, B., and Levine, A. J. (1994). Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B 55-kD protein. Genes Dev 8:1235–1246.

    Article  PubMed  CAS  Google Scholar 

  • Lohrum, M. A., Ashcroft, M., Kubbutat, M. H., and Vousden, K. H. (2000). Identification of a cryptic nucleolar-localization signal in MDM2. Nat Cell Biol 2:179–181.

    Article  PubMed  CAS  Google Scholar 

  • Lomax, M., and Fried, M. (2001). Polyoma virus disrupts ARF signaling to p53. Oncogene 20:4951–4960.

    Article  PubMed  CAS  Google Scholar 

  • Lowe, S. W., Schmitt, E. M., Smith, S. W., Osborne, B. A., and Jacks, T. (1993). p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362:847–849.

    Article  PubMed  CAS  Google Scholar 

  • Lu, W., Pochampally, R., Chen, L., Traidej, M., Wang, Y., and Chen, J. (2000). Nuclear exclusion of p53 in a subset of tumors requires MDM2 function. Oncogene 19:232–240.

    Article  PubMed  CAS  Google Scholar 

  • Maki, C. G. (1999). Oligomerization is required for p53 to be efficiently ubiquitinated by MDM2. J Biol Chem 274:16531–16535.

    Article  PubMed  CAS  Google Scholar 

  • Maya, R., Balass, M., Kim, S. T., Shkedy, D., Leal, J. F., Shifman, O., Moas, M., Buschmann, T., Ronai, Z., Shiloh, Y., Kastan, M. B., Katzir, E., and Oren, M. (2001). ATM-dependent phosphorylation of Mdm2 on serine 395: role in p53 activation by DNA damage. Genes Dev 15:1067–1077.

    Article  PubMed  CAS  Google Scholar 

  • Mayo, L. D., and Donner, D. B. (2001). A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci USA 98:11598–11603.

    Article  PubMed  CAS  Google Scholar 

  • Mayo, L. D., Turchi, J. J., and Berberich, S. J. (1997). Mdm-2 phosphorylation by DNA-dependent protein kinase prevents interaction with p53. Cancer Res 57:5013–5016.

    PubMed  CAS  Google Scholar 

  • Melchior, F., and Hengst, L. (2000). Mdm2-SUMO1: is bigger better? Nat Cell Biol 2:E161–3.

    Article  PubMed  CAS  Google Scholar 

  • Mendrysa, S. M., and Perry, M. E. (2000). The p53 tumor suppressor protein does not regulate expression of its own inhibitor, MDM2, except under conditions of stress. Mol Cell Biol 20:2023–20230.

    Article  PubMed  CAS  Google Scholar 

  • Midgley, C. A., and Lane, D. P. (1997). p53 protein stability in tumour cells is not determined by mutation but is dependent on Mdm2 binding. Oncogene 15:1179–1189.

    Article  PubMed  CAS  Google Scholar 

  • Moll, U. M., LaQuaglia, M., Benard, J., and Riou, G. (1995). Wild-type p53 protein undergoes cytoplasmic sequestration in undifferentiated neuroblastomas but not in differentiated tumors. Proc Natl Acad Sci USA 92:4407–4411.

    Article  PubMed  CAS  Google Scholar 

  • Moll, U. M., Riou, G., and Levine, A. J. (1992). Two distinct mechanisms alter p53 in breast cancer: mutation and nuclear exclusion. Proc Natl Acad Sci USA 89:7262–7266.

    Article  PubMed  CAS  Google Scholar 

  • Momand, J., Jung, D., Wilczynski, S., and Niland, J. (1998). The MDM2 gene amplification database. Nucleic Acids Res 26:3453–3459.

    Article  PubMed  CAS  Google Scholar 

  • Momand, J., Wu, H. H., and Dasgupta, G. (2000). MDM2-master regulator of the p53 tumor suppressor protein. Gene 242:15–29.

    Article  PubMed  CAS  Google Scholar 

  • Momand, J., Zambetti, G. P., Olson, D. C., George, D., and Levine, A. J. (1992). The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69:1237–1245.

    Article  PubMed  CAS  Google Scholar 

  • Montes de Oca Luna, R., Wagner, D. S., and Lozano, G. (1995). Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 378:203–206.

    Article  PubMed  CAS  Google Scholar 

  • Montes de Oca Luna, R., Tabor, A. D., Eberspaecher, H., Hulboy, D. L., Worth, L. L., Colman, M. S., Finlay, C. A., and Lozano, G. (1996). The organization and expression of the mdm2 gene. Gene 33:352–357.

    CAS  Google Scholar 

  • Oliner, J. D., Kinzler, K. W., Meltzer, P. S., George, D. L., and Vogelstein, B. (1992). Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 358:80–83.

    Article  PubMed  CAS  Google Scholar 

  • Oliner, J. D., Pietenpol, J. A., Thiagalingam, S., Gyuris, J., Kinzler, K. W., and Vogelstein, B. (1993). Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature 362:857–860.

    Article  PubMed  CAS  Google Scholar 

  • Olson, D. C., Marechal, V., Momand, J., Chen, J., Romocki, C., and Levine, A. J. (1993). Identification and characterization of multiple mdm-2 proteins and mdm-2-p53 protein complexes. Oncogene 8:2353–2360.

    PubMed  CAS  Google Scholar 

  • Parant, J., Chavez-Reyes, A., Little, N. A., Yan, W., Reinke, V., Jochemsen, A. G., and Lozano, G. (2001). Rescue of embryonic lethality in Mdm4-null mice by loss of Trp53 suggests a nonoverlapping pathway with MDM2 to regulate p53. Nat Genet 29:92–95.

    Article  PubMed  CAS  Google Scholar 

  • Perry, M. E., Mendrysa, S. M., Saucedo, L. J., Tannous, P., and Holubar, M. (2000). p76(MDM2) inhibits the ability of p90(MDM2) to destabilize p53. J Biol Chem 275:5733–5738.

    Article  PubMed  CAS  Google Scholar 

  • Picksley, S. M., Vojtesek, B., Sparks, A., and Lane, D. P. (1994). Immunochemical analysis of the interaction of p53 with MDM2;-fine mapping of the MDM2 binding site on p53 using synthetic peptides. Oncogene 9:2523–2529.

    PubMed  CAS  Google Scholar 

  • Piette, J., Neel, H., and Marechal, V. (1997). Mdm2: keeping p53 under control. Oncogene 15:1001–1010.

    Article  PubMed  CAS  Google Scholar 

  • Pomerantz, J., Schreiber-Agus, N., Liegeois, N. J., Silverman, A., Alland, L., Chin, L., Potes, J., Chen, K., Orlow, I., Lee, H.W., Cordon-Cardo, C., and DePinho, R. A. (1998). The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2’s inhibition of p53. Cell 92:713–723.

    Article  PubMed  CAS  Google Scholar 

  • Ramqvist, T., Magnusson, K. P., Wang, Y., Szekely, L., Klein, G., and Wiman, K. G. (1993). Wild-type p53 induces apoptosis in a Burkitt lymphoma (BL) line that carries mutant p53. Oncogene 8:1495–1500.

    PubMed  CAS  Google Scholar 

  • Riemenschneider, M. J., Buschges, R., Wolter, M., Reifenberger, J., Bostrom, J., Kraus, J. A., Schlegel, U., and Reifenberger, G. (1999). Amplification and overexpression of the MDM4 (MDMX) gene from 1q32 in a subset of malignant gliomas without TP53 mutation or MDM2 amplification. Cancer Res 59:6091–6096.

    PubMed  CAS  Google Scholar 

  • Ries, S., Biederer, C., Woods, D., Shifman, O., Shirasawa, S., Sasazuki, T., McMahon, M., Oren, M., and McCormick, F. (2000). Opposing effects of Ras on p53: transcriptional activation of mdm2 and induction of p19ARF. Cell 103:321–330.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez, M. S., Desterro, J. M., Lain, S., Midgley, C. A., Lane, D. P., and Hay, R. T. (1999). SUMO-1 modification activates the transcriptional response of p53. EMBO J 18:6455–6461.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Lopez, A. M., Xenaki, D., Eden, T. O., Hickman, J. A., and Chresta, C. M. (2001). MDM2 mediated nuclear exclusion of p53 attenuates etoposide-induced apoptosis in neuroblastoma cells. Mol Pharmacol 59:135–143.

    PubMed  CAS  Google Scholar 

  • Roth, J., Dobbelstein, M., Freedman, D. A., Shenk, T., and Levine, A. J. (1998). Nucleo-cytoplasmic shuttling of the hdm2 oncoprotein regulates the levels of the p53 protein via a pathway used by the human immunodeficiency virus rev protein. EMBO J 17:554–564.

    Article  PubMed  CAS  Google Scholar 

  • Sakaguchi, K., Saito, S., Higashimoto, Y., Roy, S., Anderson, C. W., and Appella, E. (2000). Damage-mediated phosphorylation of human p53 threonine 18 through a cascade mediated by a casein 1-like kinase. Effect on Mdm2 binding. J Biol Chem 275:9278–9283.

    Article  PubMed  CAS  Google Scholar 

  • Saucedo, L. J., Myers, C. D., and Perry, M. E. (1999). Multiple murine double minute gene 2 (MDM2) proteins are induced by ultraviolet light. J Biol Chem 274:8161–8168.

    Article  PubMed  CAS  Google Scholar 

  • Schlamp, C. L., Poulsen, G. L., Nork, T. M., and Nickells, R. W. (1997). Nuclear exclusion of wild-type p53 in immortalized human retinoblastoma cells. J Natl Cancer Inst 89:1530–1536.

    Article  PubMed  CAS  Google Scholar 

  • Sherr, C. J. (2001). The ink4a/arf network in tumour suppression. Nat Rev Mol Cell Biol 2:731–737.

    Article  PubMed  CAS  Google Scholar 

  • Shieh, S. Y., Ikeda, M., Taya, Y., and Prives, C. (1997). DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91:325–334.

    Article  PubMed  CAS  Google Scholar 

  • Shvarts, A., Steegenga, W. T., Riteco, N., van Laar, T., Dekker, P., Bazuine, M., van Ham, R. C., van der Houven van Oordt, W., Hateboer, G., van der Eb, A. J., and Jochemsen, A. G. (1996). MDMX: a novel p53-binding protein with some functional properties of MDM2. EMBO J 15:5349–5357.

    PubMed  CAS  Google Scholar 

  • Siliciano, J. D., Canman, C. E., Taya, Y., Sakaguchi, K., Appella, E., and Kastan, M. B. (1997). DNA damage induces phosphorylation of the amino terminus of p53. Genes Dev 11:3471–3481.

    PubMed  CAS  Google Scholar 

  • Stoll, R., Renner, C., Hansen, S., Palme, S., Klein, C., Belling, A., Zeslawski, W., Kamionka, M., Rehm, T., Muhlhahn, P., Schumacher, R., Hesse, F., Kaluza, B., Voelter, W., Engh, R. A., and Holak, T. A. (2001). Chalcone derivatives antagonize interactions between the human oncoprotein MDM2 and p53. Biochemistry 40:336–344.

    Article  PubMed  CAS  Google Scholar 

  • Stommel, J. M., Marchenko, N. D., Jimenez, G. S., Moll, U. M., Hope, T. J., and Wahl, G. M. (1999). A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking. EMBO J 18:1660–1672.

    Article  PubMed  CAS  Google Scholar 

  • Tao, W., and Levine, A. J. (1999). Nucleocytoplasmic shuttling of oncoprotein Hdm2 is required for Hdm2-mediated degradation of p53. Proc Natl Acad Sci USA 96:3077–3080.

    Article  PubMed  CAS  Google Scholar 

  • Tao, W., and Levine, A. J. (1999). P19(ARF) stabilizes p53 by blocking nucleo-cytoplasmic shuttling of Mdm2. Proc Natl Acad Sci USA 96:6937–6941.

    Article  PubMed  CAS  Google Scholar 

  • Teoh, G., Urashima, M., Ogata, A., Chauhan, D., DeCaprio, J. A., Treon, S. P., Schlossman, R. L., and Anderson, K. C. (1997). MDM2 protein overexpression promotes proliferation and survival of multiple myeloma cells. Blood 90:1982–1992.

    PubMed  CAS  Google Scholar 

  • Unger, T., Juven-Gershon, T., Moallem, E., Berger, M., Vogt Sionov, R., Lozano, G., Oren, M., and Haupt, Y. (1999)a. Critical role for Ser20 of human p53 in the negative regulation of p53 by Mdm2. EMBO J 18:1805–1814.

    Article  PubMed  CAS  Google Scholar 

  • Unger, T., Sionov, R.V., Moallem, E., Yee, C. L., Howley, P. M., Oren, M., and Haupt, Y. (1999)b. Mutations in serines 15 and 20 of human p53 impair its apoptotic activity. Oncogene 18:3205–3212.

    Article  PubMed  CAS  Google Scholar 

  • Vassilev, L. T., Vu, B. T., Graves, B., Carvajal, D., Podlaski, F., Filipovic, Z., Kong, N., Kamlott, U., Lukacs, C., Klein, C., Fotouhi, N. and Liu, E. A. (2004). In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303:844–848.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y., Ramqvist, T., Szekely, L., Axelson, H., Klein, G., and Wiman, K. G. (1993). Reconstitution of wild-type p53 expression triggers apoptosis in a p53-negative v-myc retrovirus-induced T-cell lymphoma line. Cell Growth Differ 4:467–473.

    PubMed  CAS  Google Scholar 

  • Weber, J. D., Taylor, L. J., Roussel, M. F., Sherr, C. J., and Bar-Sagi, D. (1999). Nucleolar Arf sequesters Mdm2 and activates p53. Nat Cell Biol 1:20–26.

    Article  PubMed  CAS  Google Scholar 

  • Wu, X., Bayle, J. H., Olson, D., and Levine, A. J. (1993). The p53-mdm-2 autoregulatory feedback loop. Genes Dev 7:1126–1132.

    Article  PubMed  CAS  Google Scholar 

  • Xiao, Z. X., Chen, J., Levine, A. J., Modjtahedi, N., Xing, J., Sellers, W. R., and Livingston, D. M. (1995). Interaction between the retinoblastoma protein and the oncoprotein MDM2. Nature 375:694–698.

    Article  PubMed  CAS  Google Scholar 

  • Xirodimas, D., Saville, M. K., Edling, C., Lane, D. P., and Lain, S. (2001). Different effects of p14ARF on the levels of ubiquitinated p53 and Mdm2 in vivo. Oncogene 20:4972–4983.

    Article  PubMed  CAS  Google Scholar 

  • Yaseen, N. R., and Blobel, G. (1999). Two distinct classes of Ran-binding sites on the nucleoporin Nup-358. Proc Natl Acad Sci USA 96:5516–5521.

    Article  PubMed  CAS  Google Scholar 

  • Zambetti, G. P., and Levine, A. J. (1993). A comparison of the biological activities of wild-type and mutant p53. FASEB J 7:855–865.

    PubMed  CAS  Google Scholar 

  • Zauberman, A., Flusberg, D., Haupt, Y., Barak, Y., and Oren, M. (1995). A functional p53-responsive intronic promoter is contained within the human mdm2 gene. Nucleic Acids Res 23:2584–2592.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y., and Xiong, Y. (2001). A p53 amino-terminal nuclear export signal inhibited by DNA damageinduced phosphorylation. Science 292:1910–1915.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y., Xiong, Y., and Yarbrough, W. G. (1998). ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell 92:725–734.

    Article  PubMed  CAS  Google Scholar 

  • Zindy, F., Eischen, C. M., Randle, D. H., Kamijo, T., Cleveland, J. L., Sherr, C. J., and Roussel, M. F. (1998). Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev 12:2424–2433.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science Business Media, Inc.

About this chapter

Cite this chapter

Momand, J., Aspuria, P.J., Furuta, S. (2005). MDM2 and MDMX Regulators of p53 Activity. In: Zambetti, G.P. (eds) The p53 Tumor Suppressor Pathway and Cancer. Protein Reviews, vol 2. Springer, Boston, MA. https://doi.org/10.1007/0-387-30127-5_7

Download citation

Publish with us

Policies and ethics