Skip to main content

Holonomy, Geometry and Topology of Manifolds with Grassmann Structure

  • Chapter
Non-Euclidean Geometries

Part of the book series: Mathematics and Its Applications ((MAIA,volume 581))

  • 2284 Accesses

Abstract

The main goal is to present how geometry and algebra intertwine in studying some topics. Let (G) be the vector bundle of all curvature tensors corresponding to torsion-free connections on a smooth manifold M whose holonomy group is G. Here we present an overview on (G) from the representation theory point of view. We pay attention especially to manifolds endowed with Grassmann structure. Some examples of this type of manifolds are given as well as some topological obstructions for the existence of this structure. It is confirmed that many geometrical properties of manifolds with Grassmann structure are related to some symmetry properties of a curvature, which belongs to some simple G-modules of (G). A manifold may be endowed with various types of connections. The most interesting are those whose curvatures belong either to some simple submodules or to some of their direct sums as they define some special geometry of manifolds with Grassmann structure. Among these types of connections we point out: half-flat Grassmann connections, connections corresponding to some normalization, projectively equivalent connections, connections with symmetric or skew-symmetric Ricci tensor, etc. Having in mind a complete decomposition of (G). into simple submodules we can also reveal some new curvature invariants corresponding to some transformations of manifolds with Grassmann structure. Some relations between projective structures and corresponding reductions of a structure group are presented. We also give an overview of relations between projective geometry of manifolds with a special type of Grassmann structure and Riccati type equations. Various examples of previously mentioned facts are also provided.

Research partially supported by the Ministry of Science of Serbia, project MM1646.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Akivis M. and Goldberg V., Conformal Differential Geometry and its generalizations, (Pure and Applied Mathematics), John Wiley & Sons, New York, (1996).

    Google Scholar 

  2. Alekseevsky D. V., Riemannian spaces with unusual holonomy groups, (Func. Anal and Appl.), Vol 2 97–105, (1968).

    Article  Google Scholar 

  3. Alekseevsky D. V., Cortes V., and Devchand C., Yang-Mills connections over manifolds with Grassmann structure, (Max-Planck-Institut für Mathematik), Preprint Series 2002 (124).

    Google Scholar 

  4. Alekseevsky D. V. and Graev M. M., Twistors and G-structures, (Izv. Ross. Akad. Nauk, Ser. Matem.) Tom 56, No 1, (1992), English translation: Russian Acad. Sci. Izv. Math. Vol 40 No 1, (1993).

    Google Scholar 

  5. Alekseevsky D. V, and Marchiafava S., Quaternionic structures on a manifold and subordinated structures, (Ann. Mat. pura ed applicata), Vol CLXXI, No. IV, 205–273, (1996).

    Article  MathSciNet  Google Scholar 

  6. Atiyah M. F., Hitchin N. J., and Singer I. M., Self-duality in four-dimensional Riemannian geometry, (Proc. Roy. Soc. London,) Ser. A, Vol 362, 425–467, (1978).

    MathSciNet  MATH  Google Scholar 

  7. Bailey T.N. and Eastwood M.G., Complex paraconformal manifolds-their differential geometry and twistor theory, (Forum Math.), Vol 3, 61–103, (1991).

    Article  MathSciNet  MATH  Google Scholar 

  8. Berger M., Sur les groupes d’holonomie homogène des variétés a connexion affine et des variétés riemanniennes, (Bull. Soc. Math. France), Vol 83, 279–330, (1955).

    MATH  MathSciNet  Google Scholar 

  9. Blažić N. and Bokan N., Compact Riemann surfaces with skew-symmetric Ricci tensor, (Izv. VUZ), Vol 9(376), 8–12, (1993).

    Google Scholar 

  10. Blažić N. and Bokan N., Projective and affine transformations of a complex symmetric connection, (Bull. Austral. Math. Soc.), Vol 50, 337–347, (1994).

    Article  MathSciNet  MATH  Google Scholar 

  11. Blair D. and Ledger A., A characterization of oriented Grassmann manifolds, (Rocky Mt. J. Math.), Vol 15, 573–584, (1984).

    MathSciNet  MATH  Google Scholar 

  12. Bokan N., The decomposition theory and its applications, (The math. Heritage of C.F. Gauss (edited by G.M. Rassias)), World Sci. Publ. Co. Singapore, pp. 66–99, (1991).

    Google Scholar 

  13. Bokan N., Matzeu P., and Rakić Z., Geometric quantities of manifolds with Grassmann structure, (submitted), (2003).

    Google Scholar 

  14. Bryant R., Two exotic holonomies in dimension four, (Path geometries, and Twistor Theory, Proc. Symp. in Pure Math.), Vol 53, 33–88, (1991).

    MATH  MathSciNet  Google Scholar 

  15. Chi Q.S. and Schwachhöfer L., Exotic holonomy on moduli spaces of rational curves, (Differ. Geom. Appl.), Vol 8, No 2, 105–134 (1998).

    Article  MATH  Google Scholar 

  16. Dimitrić I., A note on equivariant embeddings of Grassmannians, (Publ. Inst. Math.), Vol 59(73), 131–137 (1996).

    Google Scholar 

  17. Eells J. and Salamon S., Constructions twistorielles des applications harmoniques, (C.R. Acad. Sci. Paris Sér. I Math. Vol 296, 685–687, (1983).

    MathSciNet  MATH  Google Scholar 

  18. Fulton W. and J. Harris, Representation Theory, Springer-Verlag, GTM 129, New York, Berlin, Heidelberg, (1991).

    MATH  Google Scholar 

  19. Hamermesh M., Group theory and its application to physical processes, Addison-Wesley Publishing Company, Reading, Massachusetts, (1962).

    Google Scholar 

  20. Hangan Th., Le pseudo-groupe projectif grassmannien (Romanian), (An. Sti. Univ. Al. I. Cuza Iasi), N. Ser., Sect. Ia 11B, 349–355 (1965).

    MATH  MathSciNet  Google Scholar 

  21. Hangan Th., Tensor-product tangent bundles, (Arch. der Math.), Vol 19(4), 436–448, (1968).

    Article  MATH  MathSciNet  Google Scholar 

  22. Hangan Th., Géometrie différentielle grassmannienne, (Revue Roum. Math. Pures et Appl.), Vol 11, No 5, 519–531, (1966).

    MATH  MathSciNet  Google Scholar 

  23. Hangan Th., Equations tensorielles de certaines métriques riemannienes d’espaces symétriques, (C.R. Acad. Sc. Paris), Série A, Vol 277, 849–851, (1973).

    MATH  MathSciNet  Google Scholar 

  24. Hangan Th., Variétés et transformations infinitésimales homographiques, (C.R. Acad. Sc. Paris), Série A, Vol 281, 859–861, (1975).

    MATH  MathSciNet  Google Scholar 

  25. Hangan Th., Sur l’intégrabilité des structures tangentes produits tensoriels réels, (Ann. Mat. Pura et Appl.), Vol 126, 149–185, (1980).

    Article  MATH  MathSciNet  Google Scholar 

  26. Hangan Th., On the Riemannian structure of the real and complex Grassmann manifolds, (Tensor), Vol 18, 26–31, (1967).

    MATH  MathSciNet  Google Scholar 

  27. Hano J. and Ozeki H., On the holonomy group of linear connections, (Nagoya Math. J.), Vol 10, 97–100, (1956).

    MathSciNet  MATH  Google Scholar 

  28. Kobayashi S. and Nomizu K., Foundations of differential geometry Vol. 1 and 2, (Interscience Publishers, New York, London), (1963).

    MATH  Google Scholar 

  29. Krupka D., The trace decomposition of tensors of type (1,2) and (1,3), (New Developments in Differential Geomatry, Proc. Colloq. on Diff. Geom., July 1994, Debrecen, J. Szenthe and L. Tamássy, Eds.), Kluwer Academic Publishers, Dordrecht, 243–253, (1996).

    Google Scholar 

  30. Leichtweiss K., Zur Riemannschen Geometrie in Grassmannschen Mannigfaltigkeiten, (Math. Zeitschr.), Vol 76, 334–366, (1961).

    Article  MATH  MathSciNet  Google Scholar 

  31. Machida Y. and Sato H., Twistor theory of manifolds with Grassmannian structures, (Nagoya Math. J.), Vol 160, 17–102, (2000).

    MathSciNet  MATH  Google Scholar 

  32. Manin Yu. I., Gauge Field Theory and Complex Geometry, 2nd Edition, Springer-Verlag, New York, 1997.

    MATH  Google Scholar 

  33. Manin Yu. I., New dimensions in geometry, (Lect. Notes in Math.,) 1111, Springer-Verlag, New York, 59–101, (1985).

    Google Scholar 

  34. Marchiafava S., Varietà localmente grassmanniane quaternionali, (Atti Accad. naz. dei Lincei), Vol 57, 80–89, (1974).

    MathSciNet  Google Scholar 

  35. Merkulov S. A., Paraconformal supermanifolds and nonstandard N-extended supergravity models, (Classical Quantum Grav.), Vol 8, 557–569, (1991).

    Article  MATH  MathSciNet  Google Scholar 

  36. Merkulov S. and Schwachhöfer L., Classification of irreducible holonomies of torsion-free affine connections, (Ann. Math. (2)), Vol 150, No 1, 77–149, (1999).

    Article  MATH  Google Scholar 

  37. Merkulov S. and Schwachhöfer L., Addendum to: Classification of irreducible holonomies of torsion-free affine connections., (Ann. Math. (2)), Vol 150, No 3, 1177–1179, (1999).

    Article  Google Scholar 

  38. Penrose R., The twistor programme, (Rep. Math. Phys.,) Vol 12, 65–76, (1977).

    Article  MathSciNet  Google Scholar 

  39. Pontryagin L.S., Characteristic cycles on differentiable manifolds, (Matematicheskii Sbornik (NS)), Vol 21(63), 233–284 (1947), AMS (1950), Translation n. 32.

    MATH  MathSciNet  Google Scholar 

  40. Salamon S., Riemannian geometry and holonomy groups, (Pitman Research Notes in Mathematics Series), 201, John Wiley & Sons., New York, (1989).

    Google Scholar 

  41. Simon U., Schwenk-Schellschmidt A. and Viesel H., Introduction to the affine differential geometry of hypersurfaces, (Lecture Notes), Science University of Tokyo, (1991).

    Google Scholar 

  42. Strichartz R., Linear algebra of curvature tensors and their covariant derivative, (Can. J. Math.), Vol XL, No 5, 1105–1143, (1988).

    MathSciNet  Google Scholar 

  43. Tamássy L., Über den Affinzusammenhang von, zu tangentialräumen gehörenden Produkträumen, (Acta Math. Acad. Sci. Hungar.), Vol 11, No 1–2, 65–82, (1960).

    Article  MATH  Google Scholar 

  44. Tamássy L., Über tensorielle Übertragungen spezieller Art, (Publicationes Mathematicae), Vol 11, No 1–4, 273–277, (1964).

    MATH  Google Scholar 

  45. Tamássy L., Über autoparallele Flächen tensorial zusammenhängender Räume, (Acta Math. Acad. Sci. Hungar.), Vol 16, No 1–2, 75–87, (1965).

    Article  MATH  MathSciNet  Google Scholar 

  46. Tamássy L., Aus dekomponierbaren Elementen bestehende Gebilde eines Produktraumes, (Matem. vesnik), Vol 2(17), 121–126, (1965).

    MATH  Google Scholar 

  47. Vukmirović S., Para-quaternionic Kähler reduction, preprint, (2003), arXiv: math. DG/0304424.

    Google Scholar 

  48. Wolf J.A., Space forms of Grassmann manifolds, (Can. J. Math.), Vol 15, 193–205, (1963).

    MATH  Google Scholar 

  49. Zelikin M.I., Homogeneous spaces and the Riccati equation in variational calulus (russian ed.), (Factorial), Moscow, (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Bokan, N., Matzeu, P., Rakić, Z. (2006). Holonomy, Geometry and Topology of Manifolds with Grassmann Structure. In: Prékopa, A., Molnár, E. (eds) Non-Euclidean Geometries. Mathematics and Its Applications, vol 581. Springer, Boston, MA. https://doi.org/10.1007/0-387-29555-0_19

Download citation

Publish with us

Policies and ethics